文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

集成微磁通门磁传感器的设计:数值分析的优势和挑战。

Design of Integrated Micro-Fluxgate Magnetic Sensors: Advantages and Challenges of Numerical Analyses.

机构信息

Department of Industrial Engineering, University of Padova, 35131 Padua, Italy.

出版信息

Sensors (Basel). 2022 Jan 26;22(3):961. doi: 10.3390/s22030961.


DOI:10.3390/s22030961
PMID:35161707
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8838115/
Abstract

Miniaturization and on-chip integration are major lines of research in many branches of science and technology developments, undoubtedly in sensor technology. Fluxgate magnetometers are very sensitive, and accurate magnetic sensors able to detect weak fields both AC and DC, which in recent years saw a great effort in minimizing their dimensions, weight, and power consumption. The physics behind the fluxgate principle is rather complex and makes simulations difficult and only partially used in the literature. The limited physical access to micro sensors for measurements and the need to optimize the entire integrated system, including the sensor geometry and the excitation and readout circuits, make numerical analyses particularly useful in the design of miniaturized sensors. After a thorough review of the miniaturized solutions proposed so far, the present paper examines in detail the possibility of adopting a model based approach for designing miniaturized fluxgate sensors. The model of the fluxgate effect of two different technologies proposed in the literature has been implemented to benchmark simulation results with real data. In addition to the advantages for an optimized design, the implementation and computational challenges of the numerical analyses are precisely outlined.

摘要

微型化和芯片集成是许多科学和技术发展分支的主要研究方向,无疑在传感器技术中也是如此。磁通门磁力计是非常敏感和精确的磁场传感器,能够检测交流和直流的弱磁场,近年来在最小化其尺寸、重量和功耗方面取得了很大的进展。磁通门原理背后的物理原理相当复杂,使得模拟变得困难,并且在文献中仅部分使用。由于对微传感器进行测量的物理访问有限,以及需要优化整个集成系统,包括传感器几何形状以及激励和读出电路,因此数值分析在微型传感器的设计中特别有用。在彻底审查了迄今为止提出的小型化解决方案之后,本文详细研究了采用基于模型的方法来设计微型磁通门传感器的可能性。本文实现了文献中提出的两种不同技术的磁通门效应模型,以便将模拟结果与实际数据进行基准测试。除了优化设计的优势外,还详细说明了数值分析的实现和计算挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/5652ab483edf/sensors-22-00961-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/65cd9d0af164/sensors-22-00961-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/f0970a59b96d/sensors-22-00961-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/5082be8f5525/sensors-22-00961-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/bb776d728f5a/sensors-22-00961-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/e12e7499a551/sensors-22-00961-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/c6973bc3a459/sensors-22-00961-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/bf11210ac751/sensors-22-00961-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/19683a197176/sensors-22-00961-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/2743f54d2540/sensors-22-00961-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/4d88d207a069/sensors-22-00961-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/0d5413e75db8/sensors-22-00961-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/188250d1698f/sensors-22-00961-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/7a9856bf02a1/sensors-22-00961-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/80e891aef7a5/sensors-22-00961-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/811a73fba6ff/sensors-22-00961-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/e2071ff6113f/sensors-22-00961-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/0d98cf3fa20e/sensors-22-00961-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/495d656d463a/sensors-22-00961-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/8234783ef722/sensors-22-00961-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/c097156f043c/sensors-22-00961-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/c133324db86f/sensors-22-00961-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/5652ab483edf/sensors-22-00961-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/65cd9d0af164/sensors-22-00961-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/f0970a59b96d/sensors-22-00961-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/5082be8f5525/sensors-22-00961-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/bb776d728f5a/sensors-22-00961-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/e12e7499a551/sensors-22-00961-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/c6973bc3a459/sensors-22-00961-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/bf11210ac751/sensors-22-00961-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/19683a197176/sensors-22-00961-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/2743f54d2540/sensors-22-00961-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/4d88d207a069/sensors-22-00961-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/0d5413e75db8/sensors-22-00961-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/188250d1698f/sensors-22-00961-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/7a9856bf02a1/sensors-22-00961-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/80e891aef7a5/sensors-22-00961-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/811a73fba6ff/sensors-22-00961-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/e2071ff6113f/sensors-22-00961-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/0d98cf3fa20e/sensors-22-00961-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/495d656d463a/sensors-22-00961-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/8234783ef722/sensors-22-00961-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/c097156f043c/sensors-22-00961-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/c133324db86f/sensors-22-00961-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e5/8838115/5652ab483edf/sensors-22-00961-g022.jpg

相似文献

[1]
Design of Integrated Micro-Fluxgate Magnetic Sensors: Advantages and Challenges of Numerical Analyses.

Sensors (Basel). 2022-1-26

[2]
Design of a Low-Cost Small-Size Fluxgate Sensor.

Sensors (Basel). 2021-10-2

[3]
High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design.

Sensors (Basel). 2014-7-30

[4]
Recent Progress of Fluxgate Magnetic Sensors: Basic Research and Application.

Sensors (Basel). 2021-2-22

[5]
An integrated microfluidic system using a micro-fluxgate and micro spiral coil for magnetic microbeads trapping and detecting.

Sci Rep. 2017-10-11

[6]
A new digital single-axis fluxgate magnetometer according to the cobalt-based amorphous effects.

Rev Sci Instrum. 2022-3-1

[7]
A High Stability Time Difference Readout Technique of RTD-Fluxgate Sensors.

Sensors (Basel). 2017-10-12

[8]
Demagnetization Effect in a Meander-Core Orthogonal Fluxgate Sensor.

Micromachines (Basel). 2021-8-9

[9]
MEMS Fluxgate Sensor Based on Liquid Casting.

Micromachines (Basel). 2023-11-26

[10]
Wide Linearity Range and Highly Sensitive MEMS-Based Micro-Fluxgate Sensor with Double-Layer Magnetic Core Made of Fe⁻Co⁻B Amorphous Alloy.

Micromachines (Basel). 2017-11-30

引用本文的文献

[1]
MEMS Fluxgate Sensor Based on Liquid Casting.

Micromachines (Basel). 2023-11-26

[2]
Realization and Tests of Prototype Fluxgate Magnetic Sensors for the ITER Neutral Beam Injectors.

Sensors (Basel). 2023-1-29

[3]
Measurement System for Short-Pulsed Magnetic Fields.

Sensors (Basel). 2023-1-28

本文引用的文献

[1]
Fabrication and Characterization of a Flexible Fluxgate Sensor with Pad-Printed Solenoid Coils.

Sensors (Basel). 2020-4-16

[2]
Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core.

Sensors (Basel). 2019-11-20

[3]
Direct-current current transformer for the measurement of an electric propulsion ion beam.

Rev Sci Instrum. 2019-3

[4]
A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.

Sensors (Basel). 2017-11-17

[5]
A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide.

Sensors (Basel). 2015-6-19

[6]
High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design.

Sensors (Basel). 2014-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索