Suppr超能文献

基于机器学习的非靶向 LC/HRMS 中未知化合物的绝对定量。

Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS.

机构信息

Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18 Stockholm, Sweden.

出版信息

Molecules. 2022 Feb 2;27(3):1013. doi: 10.3390/molecules27031013.

Abstract

LC/ESI/HRMS is increasingly employed for monitoring chemical pollutants in water samples, with non-targeted analysis becoming more common. Unfortunately, due to the lack of analytical standards, non-targeted analysis is mostly qualitative. To remedy this, models have been developed to evaluate the response of compounds from their structure, which can then be used for quantification in non-targeted analysis. Still, these models rely on tentatively known structures while for most detected compounds, a list of structural candidates, or sometimes only exact mass and retention time are identified. In this study, a quantification approach was developed, where LC/ESI/HRMS descriptors are used for quantification of compounds even if the structure is unknown. The approach was developed based on 92 compounds analyzed in parallel in both positive and negative ESI mode with mobile phases at pH 2.7, 8.0, and 10.0. The developed approach was compared with two baseline approaches- one assuming equal response factors for all compounds and one using the response factor of the closest eluting standard. The former gave a mean prediction error of a factor of 29, while the latter gave a mean prediction error of a factor of 1300. In the machine learning-based quantification approach developed here, the corresponding prediction error was a factor of 10. Furthermore, the approach was validated by analyzing two blind samples containing 48 compounds spiked into tap water and ultrapure water. The obtained mean prediction error was lower than a factor of 6.0 for both samples. The errors were found to be comparable to approaches using structural information.

摘要

LC/ESI/HRMS 越来越多地用于监测水样中的化学污染物,非靶向分析变得越来越普遍。不幸的是,由于缺乏分析标准,非靶向分析大多是定性的。为了解决这个问题,已经开发了模型来评估化合物结构的响应,然后可以将其用于非靶向分析中的定量。然而,这些模型仍然依赖于暂定已知的结构,而对于大多数检测到的化合物,只确定了结构候选列表,或者有时只确定了精确质量和保留时间。在本研究中,开发了一种定量方法,即使不知道结构,也可以使用 LC/ESI/HRMS 描述符来定量化合物。该方法是基于在 pH 2.7、8.0 和 10.0 的流动相下以正、负离子模式同时分析的 92 种化合物开发的。所开发的方法与两种基线方法进行了比较——一种方法假设所有化合物的响应因子相等,另一种方法使用最接近洗脱标准的响应因子。前者的平均预测误差为 29 倍,后者的平均预测误差为 1300 倍。在本文中开发的基于机器学习的定量方法中,相应的预测误差为 10 倍。此外,通过分析含有 48 种化合物的两种盲样(加入自来水和超纯水)对该方法进行了验证。对于这两个样本,获得的平均预测误差均低于 6.0 倍。发现这些误差与使用结构信息的方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c276/8840743/4c8e7d4538c8/molecules-27-01013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验