Suppr超能文献

室温下荧光蛋白激子极化子的热化。

Thermalization of Fluorescent Protein Exciton-Polaritons at Room Temperature.

机构信息

Department of Physics, Center for Discovery and Innovation, The City College of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Adv Mater. 2022 Apr;34(15):e2109107. doi: 10.1002/adma.202109107. Epub 2022 Mar 6.

Abstract

Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton-polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton-polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry-Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm ), an effective temperature is observed, T  ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton-polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavity Q-factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell-Boltzmann statistics at k  = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation.

摘要

荧光蛋白(FPs)最近成为实现超低阈值室温激子极化激元凝聚和激光的有力竞争者。本研究探讨了在环境条件下光泵浦下 FP 微腔激子极化激元的热化过程。通过一种新的 FP 分子 mScarlet 与 Fabry-Pérot 腔中的光学模式强耦合,实现了极化激元冷却。有趣的是,在约 9 nJ 每脉冲(15.6 mJ cm )的阈值激发能量(通量)下,观察到有效温度 T 约为 350 ± 35 K,接近晶格温度,表明在平衡时激子极化激元已强烈热化。这种有效的热化是由下极化激元支的能量和腔 Q 因子促进的辐射泵浦相互作用所致。在室温下,通过在阈值以上偏离 Maxwell-Boltzmann 统计,直接观察到有机腔极化激元器件从平衡态到亚稳态的显著转变。在平衡态的有机体系中热化的极化激元气体为设计室温极化激子电路、开关和用于模拟的晶格提供了巨大的可能性。

相似文献

1
Thermalization of Fluorescent Protein Exciton-Polaritons at Room Temperature.
Adv Mater. 2022 Apr;34(15):e2109107. doi: 10.1002/adma.202109107. Epub 2022 Mar 6.
2
Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
Nat Mater. 2017 Sep;16(9):911-917. doi: 10.1038/nmat4940. Epub 2017 Jul 17.
3
Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity.
Nano Lett. 2020 Oct 14;20(10):7550-7557. doi: 10.1021/acs.nanolett.0c03009. Epub 2020 Oct 2.
4
Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature.
Nano Lett. 2021 Apr 14;21(7):3331-3339. doi: 10.1021/acs.nanolett.1c01162. Epub 2021 Apr 2.
5
Bose-Einstein Condensation of Exciton-Polaritons in Organic Microcavities.
Annu Rev Phys Chem. 2020 Apr 20;71:435-459. doi: 10.1146/annurev-physchem-010920-102509. Epub 2020 Mar 3.
7
Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite.
ACS Nano. 2018 Aug 28;12(8):8382-8389. doi: 10.1021/acsnano.8b03737. Epub 2018 Aug 13.
8
Ultrafast Dynamics of Bloch Surface Wave Polaritons in Large-Area 2D Semiconductor Monolayers at Room Temperature.
Adv Mater. 2024 Aug;36(35):e2404286. doi: 10.1002/adma.202404286. Epub 2024 Jul 10.
9
An exciton-polariton laser based on biologically produced fluorescent protein.
Sci Adv. 2016 Aug 19;2(8):e1600666. doi: 10.1126/sciadv.1600666. eCollection 2016 Aug.
10
Room-Temperature Topological Polariton Laser in an Organic Lattice.
Nano Lett. 2021 Aug 11;21(15):6398-6405. doi: 10.1021/acs.nanolett.1c00661. Epub 2021 Jul 30.

引用本文的文献

1
Schlieren texture and topography induced confinement in an organic exciton-polariton laser.
Nat Commun. 2025 Jan 18;16(1):811. doi: 10.1038/s41467-025-55875-1.
2
Thermalization rate of polaritons in strongly-coupled molecular systems.
Nanophotonics. 2024 Mar 7;13(14):2635-2649. doi: 10.1515/nanoph-2023-0800. eCollection 2024 Jun.
3
Organic Room-Temperature Polariton Condensate in a Higher-Order Topological Lattice.
ACS Photonics. 2024 Aug 8;11(8):3046-3054. doi: 10.1021/acsphotonics.4c00268. eCollection 2024 Aug 21.

本文引用的文献

1
Selective isomer emission via funneling of exciton polaritons.
Sci Adv. 2021 Oct 29;7(44):eabj0997. doi: 10.1126/sciadv.abj0997.
2
Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror.
Sci Rep. 2021 Oct 22;11(1):20879. doi: 10.1038/s41598-021-00203-y.
3
Single-photon nonlinearity at room temperature.
Nature. 2021 Sep;597(7877):493-497. doi: 10.1038/s41586-021-03866-9. Epub 2021 Sep 22.
4
Room-Temperature Topological Polariton Laser in an Organic Lattice.
Nano Lett. 2021 Aug 11;21(15):6398-6405. doi: 10.1021/acs.nanolett.1c00661. Epub 2021 Jul 30.
5
Manipulating matter by strong coupling to vacuum fields.
Science. 2021 Jul 9;373(6551). doi: 10.1126/science.abd0336.
6
Effect of molecular Stokes shift on polariton dynamics.
J Chem Phys. 2021 Apr 21;154(15):154303. doi: 10.1063/5.0037896.
7
Sub-picosecond thermalization dynamics in condensation of strongly coupled lattice plasmons.
Nat Commun. 2020 Jun 19;11(1):3139. doi: 10.1038/s41467-020-16906-1.
8
Room temperature organic exciton-polariton condensate in a lattice.
Nat Commun. 2020 Jun 8;11(1):2863. doi: 10.1038/s41467-020-16656-0.
9
Bose-Einstein Condensation of Exciton-Polaritons in Organic Microcavities.
Annu Rev Phys Chem. 2020 Apr 20;71:435-459. doi: 10.1146/annurev-physchem-010920-102509. Epub 2020 Mar 3.
10
Inverting singlet and triplet excited states using strong light-matter coupling.
Sci Adv. 2019 Dec 6;5(12):eaax4482. doi: 10.1126/sciadv.aax4482. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验