Ma Ruijun, Li Shuyi, Zhang Bob, Hu Haifeng
IEEE Trans Image Process. 2022;31:2053-2066. doi: 10.1109/TIP.2022.3150294. Epub 2022 Feb 25.
Recent deep convolutional neural networks for real-world noisy image denoising have shown a huge boost in performance by training a well-engineered network over external image pairs. However, most of these methods are generally trained with supervision. Once the testing data is no longer compatible with the training conditions, they can exhibit poor generalization and easily result in severe overfitting or degrading performances. To tackle this barrier, we propose a novel denoising algorithm, dubbed as Meta PID Attention Network (MPA-Net). Our MPA-Net is built based upon stacking Meta PID Attention Modules (MPAMs). In each MPAM, we utilize a second-order attention module (SAM) to exploit the channel-wise feature correlations with second-order statistics, which are then adaptively updated via a proportional-integral-derivative (PID) guided meta-learning framework. This learning framework exerts the unique property of the PID controller and meta-learning scheme to dynamically generate filter weights for beneficial update of the extracted features within a feedback control system. Moreover, the dynamic nature of the framework enables the generated weights to be flexibly tweaked according to the input at test time. Thus, MPAM not only achieves discriminative feature learning, but also facilitates a robust generalization ability on distinct noises for real images. Extensive experiments on ten datasets are conducted to inspect the effectiveness of the proposed MPA-Net quantitatively and qualitatively, which demonstrates both its superior denoising performance and promising generalization ability that goes beyond those of the state-of-the-art denoising methods.
最近,用于现实世界噪声图像去噪的深度卷积神经网络通过在外部图像对上训练精心设计的网络,在性能上有了巨大提升。然而,这些方法大多是在有监督的情况下进行训练的。一旦测试数据与训练条件不兼容,它们就可能表现出较差的泛化能力,很容易导致严重的过拟合或性能下降。为了克服这一障碍,我们提出了一种新颖的去噪算法,称为元比例积分微分注意力网络(MPA-Net)。我们的MPA-Net是基于堆叠元比例积分微分注意力模块(MPAM)构建的。在每个MPAM中,我们利用二阶注意力模块(SAM)来利用二阶统计量探索通道维度的特征相关性,然后通过比例积分微分(PID)引导的元学习框架对其进行自适应更新。这种学习框架发挥了PID控制器和元学习方案的独特特性,在反馈控制系统中动态生成滤波器权重,以对提取的特征进行有益更新。此外,该框架的动态特性使生成的权重能够在测试时根据输入灵活调整。因此,MPAM不仅实现了判别性特征学习,还促进了对真实图像不同噪声的强大泛化能力。我们在十个数据集上进行了广泛的实验,从定量和定性两方面检验了所提出的MPA-Net的有效性,这表明它不仅具有卓越的去噪性能,还具有超越现有最先进去噪方法的泛化能力。