Suppr超能文献

利用双元元注意力的灵活通用真实照片去噪

Flexible and Generalized Real Photograph Denoising Exploiting Dual Meta Attention.

作者信息

Ma Ruijun, Li Shuyi, Zhang Bob, Fang Leyuan, Li Zhengming

出版信息

IEEE Trans Cybern. 2023 Oct;53(10):6395-6407. doi: 10.1109/TCYB.2022.3170472. Epub 2023 Sep 15.

Abstract

Supervised deep learning techniques have been widely explored in real photograph denoising and achieved noticeable performances. However, being subject to specific training data, most current image denoising algorithms can easily be restricted to certain noisy types and exhibit poor generalizability across testing sets. To address this issue, we propose a novel flexible and well-generalized approach, coined as dual meta attention network (DMANet). The DMANet is mainly composed of a cascade of the self-meta attention blocks (SMABs) and collaborative-meta attention blocks (CMABs). These two blocks have two forms of advantages. First, they simultaneously take both spatial and channel attention into account, allowing our model to better exploit more informative feature interdependencies. Second, the attention blocks are embedded with the meta-subnetwork, which is based on metalearning and supports dynamic weight generation. Such a scheme can provide a beneficial means for self and collaborative updating of the attention maps on-the-fly. Instead of directly stacking the SMABs and CMABs to form a deep network architecture, we further devise a three-stage learning framework, where different blocks are utilized for each feature extraction stage according to the individual characteristics of SMAB and CMAB. On five real datasets, we demonstrate the superiority of our approach against the state of the art. Unlike most existing image denoising algorithms, our DMANet not only possesses a good generalization capability but can also be flexibly used to cope with the unknown and complex real noises, making it highly competitive for practical applications.

摘要

监督式深度学习技术已在真实照片去噪中得到广泛探索,并取得了显著成效。然而,由于受特定训练数据的限制,当前大多数图像去噪算法很容易局限于某些噪声类型,在测试集上的泛化能力较差。为解决这一问题,我们提出了一种新颖的灵活且泛化性良好的方法,即双元元注意力网络(DMANet)。DMANet主要由一系列自元注意力模块(SMAB)和协作元注意力模块(CMAB)组成。这两个模块具有两种优势形式。首先,它们同时考虑了空间注意力和通道注意力,使我们的模型能够更好地利用更多信息丰富的特征相互依赖关系。其次,注意力模块嵌入了基于元学习的元子网,并支持动态权重生成。这样的方案可以为注意力图的实时自更新和协作更新提供一种有益的方式。我们没有直接堆叠SMAB和CMAB来形成深度网络架构,而是进一步设计了一个三阶段学习框架,根据SMAB和CMAB的各自特点,在每个特征提取阶段使用不同的模块。在五个真实数据集上,我们证明了我们的方法相对于现有技术的优越性。与大多数现有的图像去噪算法不同,我们的DMANet不仅具有良好的泛化能力,还能灵活地用于处理未知和复杂的真实噪声,使其在实际应用中具有很强的竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验