Suppr超能文献

染色质环挤出在抗体多样化中的作用。

The role of chromatin loop extrusion in antibody diversification.

机构信息

Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA.

Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.

出版信息

Nat Rev Immunol. 2022 Sep;22(9):550-566. doi: 10.1038/s41577-022-00679-3. Epub 2022 Feb 15.

Abstract

Cohesin mediates chromatin loop formation across the genome by extruding chromatin between convergently oriented CTCF-binding elements. Recent studies indicate that cohesin-mediated loop extrusion in developing B cells presents immunoglobulin heavy chain (Igh) variable (V), diversity (D) and joining (J) gene segments to RAG endonuclease through a process referred to as RAG chromatin scanning. RAG initiates V(D)J recombinational joining of these gene segments to generate the large number of different Igh variable region exons that are required for immune responses to diverse pathogens. Antigen-activated mature B cells also use chromatin loop extrusion to mediate the synapsis, breakage and end joining of switch regions flanking Igh constant region exons during class-switch recombination, which allows for the expression of different antibody constant region isotypes that optimize the functions of antigen-specific antibodies to eliminate pathogens. Here, we review recent advances in our understanding of chromatin loop extrusion during V(D)J recombination and class-switch recombination at the Igh locus.

摘要

黏合蛋白通过在两个方向相反的 CTCF 结合元件之间挤压染色质来介导整个基因组的染色质环形成。最近的研究表明,发育中的 B 细胞中的黏合蛋白介导的环挤出作用,通过一种称为 RAG 染色质扫描的过程,将免疫球蛋白重链(Igh)可变(V)、多样性(D)和连接(J)基因片段呈现给 RAG 内切酶。RAG 起始这些基因片段的 V(D)J 重组连接,产生大量不同的 Igh 可变区外显子,这些外显子是对各种病原体产生免疫反应所必需的。抗原激活的成熟 B 细胞也利用染色质环挤出作用,在类别转换重组过程中介导 Igh 恒定区外显子侧翼的开关区的联会、断裂和末端连接,从而允许表达不同的抗体恒定区同工型,优化抗原特异性抗体的功能,以消除病原体。在这里,我们回顾了最近在 Igh 基因座上 V(D)J 重组和类别转换重组过程中对染色质环挤出作用的理解进展。

相似文献

1
The role of chromatin loop extrusion in antibody diversification.
Nat Rev Immunol. 2022 Sep;22(9):550-566. doi: 10.1038/s41577-022-00679-3. Epub 2022 Feb 15.
2
Molecular basis for differential Igk versus Igh V(D)J joining mechanisms.
Nature. 2024 Jun;630(8015):189-197. doi: 10.1038/s41586-024-07477-y. Epub 2024 May 29.
3
Contribution of the IGCR1 regulatory element and the 3 CBEs to Regulation of V(D)J Recombination.
bioRxiv. 2023 Apr 25:2023.04.21.537836. doi: 10.1101/2023.04.21.537836.
4
RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes.
Adv Immunol. 2018;139:93-135. doi: 10.1016/bs.ai.2018.07.001. Epub 2018 Aug 27.
5
Contribution of the IGCR1 regulatory element and the 3' CTCF-binding elements to regulation of V(D)J recombination.
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2306564120. doi: 10.1073/pnas.2306564120. Epub 2023 Jun 20.
6
The fundamental role of chromatin loop extrusion in physiological V(D)J recombination.
Nature. 2019 Sep;573(7775):600-604. doi: 10.1038/s41586-019-1547-y. Epub 2019 Sep 11.
7
CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning.
Nature. 2020 Oct;586(7828):305-310. doi: 10.1038/s41586-020-2578-0. Epub 2020 Jul 27.
8
Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion.
Nature. 2020 Aug;584(7819):142-147. doi: 10.1038/s41586-020-2454-y. Epub 2020 Jul 1.
9
CTCF-Binding Elements Mediate Accessibility of RAG Substrates During Chromatin Scanning.
Cell. 2018 Jun 28;174(1):102-116.e14. doi: 10.1016/j.cell.2018.04.035. Epub 2018 May 24.
10
Loop extrusion mediates physiological Igh locus contraction for RAG scanning.
Nature. 2021 Feb;590(7845):338-343. doi: 10.1038/s41586-020-03121-7. Epub 2021 Jan 13.

引用本文的文献

1
The insulator EACBE regulates V(D)J recombination of Tcrd gene by modulating chromatin organization.
Front Immunol. 2025 Jul 17;16:1613621. doi: 10.3389/fimmu.2025.1613621. eCollection 2025.
2
Building a neural network model to define DNA sequence specificity in V(D)J recombination.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf551.
3
Phase Separation in Chromatin Organization and Human Diseases.
Int J Mol Sci. 2025 May 28;26(11):5156. doi: 10.3390/ijms26115156.
4
Nuclear and genome dynamics underlying DNA double-strand break repair.
Nat Rev Mol Cell Biol. 2025 Mar 17. doi: 10.1038/s41580-025-00828-1.
5
Cohesin drives chromatin scanning during the RAD51-mediated homology search.
bioRxiv. 2025 Feb 11:2025.02.10.637451. doi: 10.1101/2025.02.10.637451.
6
A dual role of Cohesin in DNA DSB repair.
Nat Commun. 2025 Jan 20;16(1):843. doi: 10.1038/s41467-025-56086-4.
7
The chromosome folding problem and how cells solve it.
Cell. 2024 Nov 14;187(23):6424-6450. doi: 10.1016/j.cell.2024.10.026.
8
Super-Enhancer-Driven IRF2BP2 is Activated by Master Transcription Factors and Sustains T-ALL Cell Growth and Survival.
Adv Sci (Weinh). 2025 Jan;12(1):e2407113. doi: 10.1002/advs.202407113. Epub 2024 Oct 25.
10
Orientation Regulation of Class-switch Recombination in Human B Cells.
J Immunol. 2024 Oct 15;213(8):1093-1104. doi: 10.4049/jimmunol.2300842.

本文引用的文献

1
The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination.
J Exp Med. 2021 Oct 4;218(10). doi: 10.1084/jem.20210250. Epub 2021 Aug 17.
2
Genome folding through loop extrusion by SMC complexes.
Nat Rev Mol Cell Biol. 2021 Jul;22(7):445-464. doi: 10.1038/s41580-021-00349-7. Epub 2021 Mar 25.
3
Dynamic 3D Locus Organization and Its Drivers Underpin Immunoglobulin Recombination.
Front Immunol. 2021 Feb 18;11:633705. doi: 10.3389/fimmu.2020.633705. eCollection 2020.
4
Cells use loop extrusion to weave and tie the genome.
Nature. 2021 Feb;590(7847):554-555. doi: 10.1038/d41586-021-00351-1.
5
Loop extrusion as a mechanism for formation of DNA damage repair foci.
Nature. 2021 Feb;590(7847):660-665. doi: 10.1038/s41586-021-03193-z. Epub 2021 Feb 17.
6
An insulator that regulates chromatin extrusion and class switch recombination.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2026399118.
7
Loop extrusion mediates physiological Igh locus contraction for RAG scanning.
Nature. 2021 Feb;590(7845):338-343. doi: 10.1038/s41586-020-03121-7. Epub 2021 Jan 13.
8
Molecular basis of CTCF binding polarity in genome folding.
Nat Commun. 2020 Nov 5;11(1):5612. doi: 10.1038/s41467-020-19283-x.
9
The molecular basis and disease relevance of non-homologous DNA end joining.
Nat Rev Mol Cell Biol. 2020 Dec;21(12):765-781. doi: 10.1038/s41580-020-00297-8. Epub 2020 Oct 19.
10
Yeast ATM and ATR kinases use different mechanisms to spread histone H2A phosphorylation around a DNA double-strand break.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21354-21363. doi: 10.1073/pnas.2002126117. Epub 2020 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验