Lamberti Fabrice-Roland, Palanchoke Ujwol, Geurts Thijs Peter Joseph, Gely Marc, Regord Sébastien, Banniard Louise, Sansa Marc, Favero Ivan, Jourdan Guillaume, Hentz Sébastien
Université Grenoble Alpes, CEA, LETI, 38000 Grenoble, France.
Matériaux et Phénomènes Quantiques, CNRS UMR 7162, Université de Paris, 75013 Paris, France.
Nano Lett. 2022 Mar 9;22(5):1866-1873. doi: 10.1021/acs.nanolett.1c04017. Epub 2022 Feb 16.
Nanoelectromechanical resonators have been successfully used for a variety of sensing applications. Their extreme resolution comes from their small size, which strongly limits their capture area. This leads to a long analysis time and the requirement for large sample quantity. Moreover, the efficiency of the electrical transductions commonly used for silicon resonators degrades with increasing frequency, limiting the achievable mechanical bandwidth and throughput. Multiplexing a large number of high-frequency resonators appears to be a solution, but this is complex with electrical transductions. We propose here a route to solve these issues, with a multiplexing scheme for very high-frequency optomechanical resonators. We demonstrate the simultaneous frequency measurement of three silicon microdisks fabricated with a 200 mm wafer large-scale process. The readout architecture is simple and does not degrade the sensing resolutions. This paves the way toward the realization of sensors for multiparametric analysis with an extremely low limit of detection and response time.
纳米机电谐振器已成功应用于各种传感应用。它们极高的分辨率源于其小尺寸,这极大地限制了它们的捕获面积。这导致分析时间长且需要大量样本。此外,常用于硅谐振器的电转换效率会随着频率增加而降低,限制了可实现的机械带宽和吞吐量。复用大量高频谐振器似乎是一种解决方案,但对于电转换来说这很复杂。我们在此提出一种解决这些问题的方法,即采用一种用于超高频光机械谐振器的复用方案。我们展示了通过200毫米晶圆大规模工艺制造的三个硅微盘的同时频率测量。读出架构简单且不会降低传感分辨率。这为实现具有极低检测限和响应时间的多参数分析传感器铺平了道路。