Suppr超能文献

纳米材料增强氨的固态储存与分解

Nanomaterials enhancing the solid-state storage and decomposition of ammonia.

作者信息

Mateti Srikanth, Saranya Lakshmi, Sathikumar Gautham, Cai Qiran, Yao Yagang, Chen Ying Ian

机构信息

Institute for Frontier Materials, Deakin University, Waurn Ponds, 3216, Australia.

National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.

出版信息

Nanotechnology. 2022 Mar 8;33(22). doi: 10.1088/1361-6528/ac55d1.

Abstract

Hydrogen is ideal for producing carbon-free and clean-green energy with which to save the world from climate change. Proton exchange membrane fuel cells use to hydrogen to produce 100% clean energy, with water the only by-product. Apart from generating electricity, hydrogen plays a crucial role in hydrogen-powered vehicles. Unfortunately, the practical uses of hydrogen energy face many technical and safety barriers. Research into hydrogen generation and storage and reversibility transportation are still in its very early stages. Ammonia (NH) has several attractive attributes, with a high gravimetric hydrogen density of 17.8 wt% and theoretical hydrogen conversion efficiency of 89.3%. Ammonia storage and transport are well-established technologies, making the decomposition of ammonia to hydrogen the safest and most carbon-free option for using hydrogen in various real-time applications. However, several key challenges must be addressed to ensure its feasibility. Current ammonia decomposition technologies require high temperatures, pressures and non-recyclable catalysts, and a sustainable decomposition mechanism is urgently needed. This review article comprehensively summarises current knowledge about and challenges facing solid-state storage of ammonia and decomposition. It provides potential strategic solutions for developing a scalable process with which to produce clean hydrogen by eliminating possible economic and technical barriers.

摘要

氢是生产无碳和清洁绿色能源的理想选择,有望使世界免受气候变化影响。质子交换膜燃料电池利用氢气产生100%的清洁能源,唯一的副产品是水。除了发电,氢气在氢动力汽车中也起着至关重要的作用。不幸的是,氢能的实际应用面临许多技术和安全障碍。氢气生成、储存和可逆运输的研究仍处于非常早期的阶段。氨(NH₃)具有几个吸引人的特性,重量氢密度高达17.8 wt%,理论氢转化效率为89.3%。氨的储存和运输是成熟的技术,这使得氨分解制氢成为在各种实时应用中使用氢气最安全、最无碳的选择。然而,要确保其可行性,必须解决几个关键挑战。目前的氨分解技术需要高温、高压和不可回收的催化剂,迫切需要一种可持续的分解机制。这篇综述文章全面总结了氨的固态储存和分解的现有知识及面临的挑战。它提出了潜在的战略解决方案,以通过消除可能的经济和技术障碍来开发一种可扩展的工艺,用于生产清洁氢气。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验