Department of Mathematics, King's College London, Strand, London, WC2R 2LS, United Kingdom.
Phys Biol. 2022 Jul 13;19(5). doi: 10.1088/1478-3975/ac55f9.
We develop a theory for thermodynamic instabilities of complex fluids composed of many interacting chemical species organised in families. This model includes partially structured and partially random interactions and can be solved exactly using tools from random matrix theory. The model exhibits three kinds of fluid instabilities: one in which the species form a condensate with a local density that depends on their family (family condensation); one in which species demix in two phases depending on their family (family demixing); and one in which species demix in a random manner irrespective of their family (random demixing). We determine the critical spinodal density of the three types of instabilities and find that the critical spinodal density is finite for both family condensation and family demixing, while for random demixing the critical spinodal density grows as the square root of the number of species. We use the developed framework to describe phase-separation instability of the cytoplasm induced by a change in pH.
我们提出了一个关于由许多相互作用的化学物种组成的复杂流体的热力学不稳定性的理论,这些物种组织成家族。该模型包括部分结构化和部分随机相互作用,并可以使用随机矩阵理论的工具精确求解。该模型表现出三种流体不稳定性:一种是其中的物种形成具有局部密度的凝聚体,该局部密度取决于它们的家族(家族凝聚);一种是其中的物种根据其家族在两相中离析(家族离析);还有一种是其中的物种以随机方式离析而与它们的家族无关(随机离析)。我们确定了这三种不稳定性的临界自旋密度,并发现对于家族凝聚和家族离析,临界自旋密度是有限的,而对于随机离析,临界自旋密度随物种数的平方根增长。我们使用所开发的框架来描述由 pH 值变化引起的细胞质相分离不稳定性。