Suppr超能文献

基于石墨烯的超表面太阳能吸收器设计及利用机器学习进行吸收预测

Graphene-based metasurface solar absorber design with absorption prediction using machine learning.

作者信息

Parmar Juveriya, Patel Shobhit K, Katkar Vijay

机构信息

Department of Electronics and Communication, Marwadi University, Rajkot, 360003, India.

Department of Computer Engineering, Marwadi University, Rajkot, 360003, India.

出版信息

Sci Rep. 2022 Feb 16;12(1):2609. doi: 10.1038/s41598-022-06687-6.

Abstract

Solar absorber is required to absorb most of the energy of the solar spectral irradiance. We propose a graphene-based solar absorber design with two different metasurfaces to improve this absorption and increase the efficiency of the solar absorber. The metasurfaces are selected based on their symmetrical/asymmetrical nature (O-shape and L-shape). The O-shape metasurface design is showing better performance over the L-shape metasurface design. The absorption performance is also compared with AM 1.5 solar spectral irradiance to show the effectiveness of the solar absorber. The absorption values are also enhanced by varying the parameters like resonator thickness and substrate thickness. The proposed solar absorber design gives maximum absorption in the ultraviolet and visible range. Furthermore, the design is also showing a high and similar absorption rate over a wide angle of incidence. The absorption of O-shape metasurface design is also predicted using machine learning. 1D-Convolutional Neural Network Regression is used to develop a Machine Learning model to determine absorption values of intermediate wavelength for assorted values of angle of incidence, resonator thickness, and substrate thickness. The results of experiments reveal that absorption values may be predicted with a high degree of accuracy. The proposed absorber with its high absorbing capacity can be applied for green energy applications.

摘要

太阳能吸收器需要吸收太阳光谱辐照度的大部分能量。我们提出了一种基于石墨烯的太阳能吸收器设计,该设计具有两种不同的超表面,以提高这种吸收并提高太阳能吸收器的效率。这些超表面是根据它们的对称/不对称性质(O形和L形)选择的。O形超表面设计比L形超表面设计表现出更好的性能。还将吸收性能与AM 1.5太阳光谱辐照度进行比较,以展示太阳能吸收器的有效性。通过改变诸如谐振器厚度和衬底厚度等参数,吸收值也得到了提高。所提出的太阳能吸收器设计在紫外和可见光范围内具有最大吸收。此外,该设计在宽入射角范围内也显示出高且相似的吸收率。O形超表面设计的吸收也使用机器学习进行了预测。使用一维卷积神经网络回归来开发机器学习模型,以确定不同入射角、谐振器厚度和衬底厚度值下中间波长的吸收值。实验结果表明,吸收值可以高精度预测。所提出的具有高吸收能力的吸收器可应用于绿色能源应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96eb/8850562/e85258cd5dbe/41598_2022_6687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验