Suppr超能文献

深度学习的数据效率会因不必要的输入维度而降低。

The Data Efficiency of Deep Learning Is Degraded by Unnecessary Input Dimensions.

作者信息

D'Amario Vanessa, Srivastava Sanjana, Sasaki Tomotake, Boix Xavier

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.

Center for Brains, Minds and Machines, Cambridge, MA, United States.

出版信息

Front Comput Neurosci. 2022 Jan 31;16:760085. doi: 10.3389/fncom.2022.760085. eCollection 2022.

Abstract

Biological learning systems are outstanding in their ability to learn from limited training data compared to the most successful learning machines, , Deep Neural Networks (DNNs). What are the key aspects that underlie this data efficiency gap is an unresolved question at the core of biological and artificial intelligence. We hypothesize that one important aspect is that biological systems rely on mechanisms such as foveations in order to reduce unnecessary input dimensions for the task at hand, , background in object recognition, while state-of-the-art DNNs do not. Datasets to train DNNs often contain such unnecessary input dimensions, and these lead to more trainable parameters. Yet, it is not clear whether this affects the DNNs' data efficiency because DNNs are robust to increasing the number of parameters in the hidden layers, and it is uncertain whether this holds true for the input layer. In this paper, we investigate the impact of unnecessary input dimensions on the DNNs data efficiency, namely, the amount of examples needed to achieve certain generalization performance. Our results show that unnecessary input dimensions that are task-unrelated substantially degrade data efficiency. This highlights the need for mechanisms that remove task-unrelated dimensions, such as foveation for image classification, in order to enable data efficiency gains.

摘要

与最成功的学习机器——深度神经网络(DNN)相比,生物学习系统在从有限的训练数据中学习的能力方面表现出色。造成这种数据效率差距的关键因素是什么,这是生物和人工智能核心领域一个尚未解决的问题。我们假设一个重要方面是,生物系统依靠诸如中央凹视觉等机制,以便为手头任务减少不必要的输入维度,例如在目标识别中的背景,而最先进的DNN则不然。用于训练DNN的数据集通常包含此类不必要的输入维度,这会导致更多可训练参数。然而,目前尚不清楚这是否会影响DNN的数据效率,因为DNN对增加隐藏层中的参数数量具有鲁棒性,并且不确定这对于输入层是否也成立。在本文中,我们研究了不必要的输入维度对DNN数据效率的影响,即实现一定泛化性能所需的示例数量。我们的结果表明,与任务无关的不必要输入维度会大幅降低数据效率。这凸显了需要像用于图像分类的中央凹视觉那样去除与任务无关维度的机制,以便提高数据效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3429/8842477/b49304474989/fncom-16-760085-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验