Suppr超能文献

用于全消化道癌症生存分析的生成式深度神经网络。

A generative deep neural network for pan-digestive tract cancer survival analysis.

作者信息

Xu Lekai, Lan Tianjun, Huang Yiqian, Wang Liansheng, Lin Junqi, Song Xinpeng, Tang Hui, Cao Haotian, Chai Hua

机构信息

School of Mathematics, Foshan University, Foshan, 528000, China.

Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510010, China.

出版信息

BioData Min. 2025 Jan 27;18(1):9. doi: 10.1186/s13040-025-00426-z.

Abstract

BACKGROUND

The accurate identification of molecular subtypes in digestive tract cancer (DTC) is crucial for making informed treatment decisions and selecting potential biomarkers. With the rapid advancement of artificial intelligence, various machine learning algorithms have been successfully applied in this field. However, the complexity and high dimensionality of the data features may lead to overlapping and ambiguous subtypes during clustering.

RESULTS

In this study, we propose GDEC, a multi-task generative deep neural network designed for precise digestive tract cancer subtyping. The network optimization process involves employing an integrated loss function consisting of two modules: the generative-adversarial module facilitates spatial data distribution understanding for extracting high-quality information, while the clustering module aids in identifying disease subtypes. The experiments conducted on digestive tract cancer datasets demonstrate that GDEC exhibits exceptional performance compared to other advanced methodologies and can separate different cancer molecular subtypes that possess both statistical and biological significance. Subsequently, 21 hub genes related to pan-DTC heterogeneity and prognosis were identified based on the subtypes clustered by GDEC. The following drug analysis suggested Dasatinib and YM155 as potential therapeutic agents for improving the prognosis of patients in pan-DTC immunotherapy, thereby contributing to the enhancement of cancer patient survival.

CONCLUSIONS

The experiment indicate that GDEC outperforms better than other deep-learning-based methods, and the interpretable algorithm can select biologically significant genes and potential drugs for DTC treatment.

摘要

背景

准确识别消化道癌(DTC)的分子亚型对于做出明智的治疗决策和选择潜在生物标志物至关重要。随着人工智能的快速发展,各种机器学习算法已成功应用于该领域。然而,数据特征的复杂性和高维度可能导致聚类过程中出现重叠和模糊的亚型。

结果

在本研究中,我们提出了GDEC,一种为精确的消化道癌亚型分类设计的多任务生成深度神经网络。网络优化过程涉及使用一个由两个模块组成的综合损失函数:生成对抗模块有助于理解空间数据分布以提取高质量信息,而聚类模块有助于识别疾病亚型。在消化道癌数据集上进行的实验表明,与其他先进方法相比,GDEC表现出卓越的性能,并且可以分离出具有统计学和生物学意义的不同癌症分子亚型。随后,基于GDEC聚类的亚型鉴定出21个与泛消化道癌异质性和预后相关的枢纽基因。接下来的药物分析表明,达沙替尼和YM155作为潜在治疗药物可改善泛消化道癌免疫治疗患者的预后,从而有助于提高癌症患者的生存率。

结论

实验表明,GDEC的性能优于其他基于深度学习的方法,并且该可解释算法可为消化道癌治疗选择具有生物学意义的基因和潜在药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6080/11771125/4719ee2f6f17/13040_2025_426_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验