文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

冠状动脉 CTA 人工智能狭窄诊断:对心血管经验较少的读者的性能和一致性的影响。

Artificial intelligence stenosis diagnosis in coronary CTA: effect on the performance and consistency of readers with less cardiovascular experience.

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing, 100050, People's Republic of China.

Shukun (Beijing) Technology Co., Ltd., Jinhui Bd, Qiyang Rd, Beijing, 100102, People's Republic of China.

出版信息

BMC Med Imaging. 2022 Feb 17;22(1):28. doi: 10.1186/s12880-022-00756-y.


DOI:10.1186/s12880-022-00756-y
PMID:35177029
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8851787/
Abstract

BACKGROUND: To investigate the influence of artificial intelligence (AI) based on deep learning on the diagnostic performance and consistency of inexperienced cardiovascular radiologists. METHODS: We enrolled 196 patents who had undergone both coronary computed tomography angiography (CCTA) and invasive coronary angiography (ICA) within 6 months. Four readers with less cardiovascular experience (Reader 1-Reader 4) and two cardiovascular radiologists (level II, Reader 5 and Reader 6) evaluated all images for ≥ 50% coronary artery stenosis, with ICA as the gold standard. Reader 3 and Reader 4 interpreted with AI system assistance, and the other four readers interpreted without the AI system. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy (area under the receiver operating characteristic curve (AUC)) of the six readers were calculated at the patient and vessel levels. Additionally, we evaluated the interobserver consistency between Reader 1 and Reader 2, Reader 3 and Reader 4, and Reader 5 and Reader 6. RESULTS: The AI system had 94% and 78% sensitivity at the patient and vessel levels, respectively, which were higher than that of Reader 5 and Reader 6. AI-assisted Reader 3 and Reader 4 had higher sensitivity (range + 7.2-+ 16.6% and + 5.9-+ 16.1%, respectively) and NPVs (range + 3.7-+ 13.4% and + 2.7-+ 4.2%, respectively) than Reader 1 and Reader 2 without AI. Good interobserver consistency was found between Reader 3 and Reader 4 in interpreting ≥ 50% stenosis (Kappa value = 0.75 and 0.80 at the patient and vessel levels, respectively). Only Reader 1 and Reader 2 showed poor interobserver consistency (Kappa value = 0.25 and 0.37). Reader 5 and Reader 6 showed moderate agreement (Kappa value = 0.55 and 0.61). CONCLUSIONS: Our study showed that using AI could effectively increase the sensitivity of inexperienced readers and significantly improve the consistency of coronary stenosis diagnosis via CCTA. Trial registration Clinical trial registration number: ChiCTR1900021867. Name of registry: Diagnostic performance of artificial intelligence-assisted coronary computed tomography angiography for the assessment of coronary atherosclerotic stenosis.

摘要

背景:本研究旨在探讨基于深度学习的人工智能(AI)对经验不足的心血管放射科医师诊断性能和一致性的影响。

方法:我们纳入了 196 例在 6 个月内行冠状动脉计算机断层扫描血管造影(CCTA)和有创冠状动脉造影(ICA)的患者。4 位心血管经验较少的阅片者(Reader 1-Reader 4)和 2 位心血管放射科医师(二级阅片者,Reader 5 和 Reader 6)对所有图像进行了评估,以≥50%的冠状动脉狭窄为阳性标准,以 ICA 作为金标准。Reader 3 和 Reader 4 在 AI 系统辅助下进行解读,其他 4 位阅片者在无 AI 系统辅助下进行解读。以患者和血管为水平,计算 6 位阅片者的敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和准确性(受试者工作特征曲线下面积(AUC))。此外,我们还评估了 Reader 1 和 Reader 2、Reader 3 和 Reader 4、Reader 5 和 Reader 6 之间的观察者间一致性。

结果:AI 系统在患者和血管水平的敏感性分别为 94%和 78%,均高于 Reader 5 和 Reader 6。在有 AI 系统辅助的情况下,Reader 3 和 Reader 4 的敏感性(分别为+7.2%至+16.6%和+5.9%至+16.1%)和 NPV(分别为+3.7%至+13.4%和+2.7%至+4.2%)均高于无 AI 系统辅助的 Reader 1 和 Reader 2。Reader 3 和 Reader 4 在解读≥50%狭窄方面具有良好的观察者间一致性(患者和血管水平的 Kappa 值分别为 0.75 和 0.80)。仅 Reader 1 和 Reader 2 显示出较差的观察者间一致性(Kappa 值分别为 0.25 和 0.37)。Reader 5 和 Reader 6 显示出中度一致性(Kappa 值分别为 0.55 和 0.61)。

结论:本研究表明,使用 AI 可以有效提高经验不足的阅片者的敏感性,并显著提高 CCTA 评估冠状动脉粥样硬化狭窄的诊断一致性。

临床试验注册:ChiCTR1900021867,名称:人工智能辅助冠状动脉计算机断层扫描血管造影对冠状动脉粥样硬化狭窄评估的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/6eab9678a079/12880_2022_756_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/beedf35ebaeb/12880_2022_756_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/e2c07004cabc/12880_2022_756_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/2ed7c3edb90c/12880_2022_756_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/6eab9678a079/12880_2022_756_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/beedf35ebaeb/12880_2022_756_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/e2c07004cabc/12880_2022_756_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/2ed7c3edb90c/12880_2022_756_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/8851787/6eab9678a079/12880_2022_756_Fig4_HTML.jpg

相似文献

[1]
Artificial intelligence stenosis diagnosis in coronary CTA: effect on the performance and consistency of readers with less cardiovascular experience.

BMC Med Imaging. 2022-2-17

[2]
Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality.

Eur J Radiol. 2021-9

[3]
The influence of artificial intelligence assistance on the diagnostic performance of CCTA for coronary stenosis for radiologists with different levels of experience.

Acta Radiol. 2023-2

[4]
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography: a CLARIFY trial sub-study.

Clin Imaging. 2022-11

[5]
Validation of the commercial coronary computed tomographic angiography artificial intelligence for coronary artery stenosis: a cross-sectional study.

Quant Imaging Med Surg. 2023-6-1

[6]
Diagnostic performance of deep learning to exclude coronary stenosis on CT angiography in TAVI patients.

Int J Cardiovasc Imaging. 2024-5

[7]
CT ​Evaluation ​by ​Artificial ​Intelligence ​for ​Atherosclerosis, Stenosis and Vascular ​Morphology ​(CLARIFY): ​A ​Multi-center, international study.

J Cardiovasc Comput Tomogr. 2021

[8]
Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis.

Comput Methods Programs Biomed. 2020-11

[9]
Do plaque-related factors affect the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system? Comparison with invasive coronary angiography.

Eur Radiol. 2022-3

[10]
The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography.

Clin Imaging. 2022-4

引用本文的文献

[1]
Diagnostic performance of deep learning-based coronary computed tomography angiography in detecting coronary artery stenosis.

Int J Cardiovasc Imaging. 2025-5

[2]
Prospective Human Validation of Artificial Intelligence Interventions in Cardiology: A Scoping Review.

JACC Adv. 2024-8-28

[3]
Revolutionizing Cardiac Imaging: A Scoping Review of Artificial Intelligence in Echocardiography, CTA, and Cardiac MRI.

J Imaging. 2024-8-8

[4]
Human AI Teaming for Coronary CT Angiography Assessment: Impact on Imaging Workflow and Diagnostic Accuracy.

Diagnostics (Basel). 2023-11-30

[5]
Artificial intelligence-based opportunistic detection of coronary artery stenosis on aortic computed tomography angiography in emergency department patients with acute chest pain.

Eur Heart J Open. 2023-9-7

[6]
Artificial intelligence in coronary computed tomography angiography: Demands and solutions from a clinical perspective.

Front Cardiovasc Med. 2023-2-16

本文引用的文献

[1]
Artificial Intelligence Applied to Breast MRI for Improved Diagnosis.

Radiology. 2021-1

[2]
2020 SCCT Guideline for Training Cardiology and Radiology Trainees as Independent Practitioners (Level II) and Advanced Practitioners (Level III) in Cardiovascular Computed Tomography: A Statement from the Society of Cardiovascular Computed Tomography.

J Cardiovasc Comput Tomogr. 2021

[3]
Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis.

Comput Methods Programs Biomed. 2020-11

[4]
Artificial Intelligence Algorithm Detecting Lung Infection in Supine Chest Radiographs of Critically Ill Patients With a Diagnostic Accuracy Similar to Board-Certified Radiologists.

Crit Care Med. 2020-7

[5]
Artificial Intelligence System Approaching Neuroradiologist-level Differential Diagnosis Accuracy at Brain MRI.

Radiology. 2020-4-7

[6]
China cardiovascular diseases report 2018: an updated summary.

J Geriatr Cardiol. 2020-1

[7]
Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist.

Neth Heart J. 2019-9

[8]
Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

Lancet. 2019-6-24

[9]
Coronary Computed Tomography Angiography for the Diagnosis of Vasospastic Angina: Comparison with Invasive Coronary Angiography and Ergonovine Provocation Test.

Korean J Radiol. 2019-5

[10]
Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection.

Radiology. 2018-7-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索