Department of Neuroscience.
Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
J Neurosci. 2022 Apr 6;42(14):2942-2950. doi: 10.1523/JNEUROSCI.1369-21.2021. Epub 2022 Feb 18.
Inhibitory microcircuits play an essential role in regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration act as gatekeepers for neural activity, synaptic plasticity, and the formation of sensory representations. Conversely, interneurons that selectively inhibit other interneurons can open gates through disinhibition. In the anterior piriform cortex, relief of inhibition permits associative LTP of excitatory synapses between pyramidal neurons. However, the interneurons and circuits mediating disinhibition have not been elucidated. In this study, we use an optogenetic approach in mice of both sexes to identify the inhibitory interneurons and disinhibitory circuits that regulate LTP. We focused on three prominent interneuron classes: somatostatin (SST), parvalbumin (PV), and vasoactive intestinal polypeptide (VIP) interneurons. We find that LTP is gated by the inactivation SST or PV interneurons and by the activation of VIP interneurons. Further, VIP interneurons strongly inhibit putative SST cells during LTP induction but only weakly inhibit PV interneurons. Together, these findings suggest that VIP interneurons mediate a disinhibitory circuit that gates synaptic plasticity during the formation of olfactory representations. Inhibitory interneurons stabilize neural activity during sensory processing. However, inhibition must also be modulated to allow sensory experience shape neural responses. In olfactory cortex, inhibition regulates activity-dependent increases in excitatory synaptic strength that accompany odor learning. We identify two inhibitory interneuron classes that act as gatekeepers preventing excitatory enhancement. We demonstrate that driving a third class of interneurons inhibits the gatekeepers and opens the gate for excitatory enhancement. All three inhibitory neuron classes comprise disinhibitory microcircuit motifs found throughout the cortex. Our findings suggest that a common disinhibitory microcircuit promotes changes in synaptic strength during sensory processing and learning.
抑制性微电路在调节皮质对感觉刺激的反应方面起着至关重要的作用。抑制树突或体整合的中间神经元作为神经活动、突触可塑性和感觉表现形成的守门员。相反,选择性抑制其他中间神经元的中间神经元可以通过去抑制打开门。在前梨状皮质中,抑制的缓解允许锥体神经元之间兴奋性突触的联想长时程增强。然而,介导去抑制的中间神经元和电路尚未阐明。在这项研究中,我们使用雌雄小鼠的光遗传学方法来确定调节 LTP 的抑制性中间神经元和去抑制性电路。我们专注于三种突出的中间神经元类:生长抑素(SST)、钙蛋白酶(PV)和血管活性肠肽(VIP)中间神经元。我们发现,LTP 由 SST 或 PV 中间神经元的失活和 VIP 中间神经元的激活来控制。此外,在 LTP 诱导期间,VIP 中间神经元强烈抑制假定的 SST 细胞,但仅弱抑制 PV 中间神经元。这些发现表明,VIP 中间神经元介导了一种去抑制性电路,该电路在嗅觉表现形成过程中调节突触可塑性。抑制性中间神经元在感觉处理过程中稳定神经活动。然而,为了允许感觉经验塑造神经反应,抑制也必须被调节。在嗅觉皮质中,抑制调节与气味学习伴随的兴奋性突触强度的活性依赖性增加。我们确定了两种作为守门员的抑制性中间神经元类,防止兴奋性增强。我们证明,驱动第三类中间神经元抑制守门员并为兴奋性增强打开大门。所有三种抑制性神经元类都包含在整个皮质中发现的去抑制微电路基序。我们的发现表明,一个共同的去抑制微电路促进了感觉处理和学习过程中突触强度的变化。