Bioengineering Department, Clemson University, Clemson, SC 29634.
Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2117323119.
Aortic valve stenosis (AVS) patients experience pathogenic valve leaflet stiffening due to excessive extracellular matrix (ECM) remodeling. Numerous microenvironmental cues influence pathogenic expression of ECM remodeling genes in tissue-resident valvular myofibroblasts, and the regulation of complex myofibroblast signaling networks depends on patient-specific extracellular factors. Here, we combined a manually curated myofibroblast signaling network with a data-driven transcription factor network to predict patient-specific myofibroblast gene expression signatures and drug responses. Using transcriptomic data from myofibroblasts cultured with AVS patient sera, we produced a large-scale, logic-gated differential equation model in which 11 biochemical and biomechanical signals were transduced via a network of 334 signaling and transcription reactions to accurately predict the expression of 27 fibrosis-related genes. Correlations were found between personalized model-predicted gene expression and AVS patient echocardiography data, suggesting links between fibrosis-related signaling and patient-specific AVS severity. Further, global network perturbation analyses revealed signaling molecules with the most influence over network-wide activity, including endothelin 1 (ET1), interleukin 6 (IL6), and transforming growth factor β (TGFβ), along with downstream mediators c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription (STAT), and reactive oxygen species (ROS). Lastly, we performed virtual drug screening to identify patient-specific drug responses, which were experimentally validated via fibrotic gene expression measurements in valvular interstitial cells cultured with AVS patient sera and treated with or without bosentan-a clinically approved ET1 receptor inhibitor. In sum, our work advances the ability of computational approaches to provide a mechanistic basis for clinical decisions including patient stratification and personalized drug screening.
主动脉瓣狭窄(AVS)患者由于细胞外基质(ECM)过度重塑而经历病理性瓣叶僵硬。许多微环境线索影响组织驻留的瓣膜成纤维细胞中 ECM 重塑基因的病理性表达,复杂的成纤维细胞信号网络的调节取决于患者特异性的细胞外因素。在这里,我们将手动整理的成纤维细胞信号网络与数据驱动的转录因子网络相结合,以预测患者特异性的成纤维细胞基因表达特征和药物反应。使用与 AVS 患者血清共培养的成纤维细胞的转录组数据,我们产生了一个大规模的、基于逻辑门的微分方程模型,其中 11 种生化和生物力学信号通过 334 种信号和转录反应网络进行传递,以准确预测 27 个纤维化相关基因的表达。个性化模型预测的基因表达与 AVS 患者超声心动图数据之间存在相关性,表明纤维化相关信号与患者特异性 AVS 严重程度之间存在联系。此外,全局网络扰动分析揭示了对网络整体活动影响最大的信号分子,包括内皮素 1(ET1)、白细胞介素 6(IL6)和转化生长因子 β(TGFβ),以及下游介质 c-Jun N-末端激酶(JNK)、信号转导和转录激活剂(STAT)和活性氧(ROS)。最后,我们进行了虚拟药物筛选,以确定患者特异性的药物反应,并通过与 AVS 患者血清共培养的瓣膜间质细胞的纤维化基因表达测量和用或不用波生坦(一种临床批准的 ET1 受体抑制剂)进行实验验证来验证这些药物反应。总之,我们的工作提高了计算方法提供临床决策(包括患者分层和个性化药物筛选)的机制基础的能力。