Suppr超能文献

从时间拓扑到空间拓扑:高级和低级网络中神经动力学的层次结构塑造了它们的复杂性。

From temporal to spatial topography: hierarchy of neural dynamics in higher- and lower-order networks shapes their complexity.

机构信息

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1Z 7K4, Canada.

Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa ON K1Z 7K4, Canada.

出版信息

Cereb Cortex. 2022 Dec 8;32(24):5637-5653. doi: 10.1093/cercor/bhac042.

Abstract

The brain shows a topographical hierarchy along the lines of lower- and higher-order networks. The exact temporal dynamics characterization of this lower-higher-order topography at rest and its impact on task states remains unclear, though. Using 2 functional magnetic resonance imaging data sets, we investigate lower- and higher-order networks in terms of the signal compressibility, operationalized by Lempel-Ziv complexity (LZC). As we assume that this degree of complexity is related to the slow-fast frequency balance, we also compute the median frequency (MF), an estimation of frequency distribution. We demonstrate (i) topographical differences at rest between higher- and lower-order networks, showing lower LZC and MF in the former; (ii) task-related and task-specific changes in LZC and MF in both lower- and higher-order networks; (iii) hierarchical relationship between LZC and MF, as MF at rest correlates with LZC rest-task change along the lines of lower- and higher-order networks; and (iv) causal and nonlinear relation between LZC at rest and LZC during task, with MF at rest acting as mediator. Together, results show that the topographical hierarchy of lower- and higher-order networks converges with their temporal hierarchy, with these neural dynamics at rest shaping their range of complexity during task states in a nonlinear way.

摘要

大脑在较低和较高阶网络的层面上表现出拓扑层次结构。然而,这种较低和较高阶拓扑结构在静息状态下的精确时间动态特征及其对任务状态的影响仍不清楚。我们使用 2 个功能磁共振成像数据集,根据信号压缩性(由 Lempel-Ziv 复杂度 (LZC) 操作化)来研究较低和较高阶网络中的较低和较高阶网络。由于我们假设这种复杂程度与快慢频率平衡有关,我们还计算了中值频率 (MF),这是一种频率分布的估计。我们证明了:(i)在静息状态下,较高阶和较低阶网络之间存在拓扑差异,前者的 LZC 和 MF 较低;(ii)较低和较高阶网络中,LZC 和 MF 均存在与任务相关和特定于任务的变化;(iii)LZC 和 MF 之间存在层次关系,因为静息时的 MF 与较低和较高阶网络中静息-任务变化的 LZC 相关;(iv)静息时的 LZC 与任务期间的 LZC 之间存在因果和非线性关系,静息时的 MF 作为中介。总之,结果表明,较低和较高阶网络的拓扑层次结构与它们的时间层次结构收敛,这些静息时的神经动力学以非线性方式塑造了它们在任务状态下的复杂度范围。

相似文献

4
Multiscale Lempel-Ziv complexity for EEG measures.用于脑电图测量的多尺度莱姆尔-齐夫复杂度
Clin Neurophysiol. 2015 Mar;126(3):541-8. doi: 10.1016/j.clinph.2014.07.012. Epub 2014 Jul 18.
8
Abnormal EEG complexity in patients with schizophrenia and depression.精神分裂症和抑郁症患者脑电图复杂性异常。
Clin Neurophysiol. 2008 Jun;119(6):1232-41. doi: 10.1016/j.clinph.2008.01.104. Epub 2008 Apr 8.

引用本文的文献

本文引用的文献

1
Intrinsic neural timescales: temporal integration and segregation.内在神经时程:时间整合与分离。
Trends Cogn Sci. 2022 Feb;26(2):159-173. doi: 10.1016/j.tics.2021.11.007. Epub 2022 Jan 3.
9
Infraslow State Fluctuations Govern Spontaneous fMRI Network Dynamics.亚慢波状态波动控制自发 fMRI 网络动力学。
Curr Biol. 2019 Jul 22;29(14):2295-2306.e5. doi: 10.1016/j.cub.2019.06.017. Epub 2019 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验