使用机器学习算法预测结直肠癌患者完整结肠系膜切除术后心力衰竭的危险因素。
Using machine learning algorithms to predict risk factors of heart failure after complete mesocolic excision in colorectal cancer patients.
作者信息
Liu Yuan, Liu Yuankun, Zhang Yu, Zhang Pengpeng, Xie Jiaheng, Zhao Ning, Xie Yi, Cheng Chao, Zhao Songyun
机构信息
Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
出版信息
Sci Rep. 2025 Jul 15;15(1):25441. doi: 10.1038/s41598-025-11726-z.
Following complete mesocolic excision (CME), heart failure (HF) emerges as a significant complication, exerting substantial impacts on both short-term and long-term patient prognoses. The primary objective of our investigation was to develop a machine learning model capable of discerning preoperative and intraoperative high-risk factors, facilitating the prediction of HF occurrence subsequent to CME. A cohort comprising 1158 patients diagnosed with colon cancer was enrolled in our study, encompassing 172 individuals who developed postoperative HF. We compiled 37 feature variables, spanning patient demographic traits, foundational medical histories, preoperative examination characteristics, surgery types, and intraoperative details. Four distinct machine learning algorithms-extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor algorithm (KNN)-were employed to construct the model. The k-fold cross-validation method, ROC curve, calibration curve, decision curve analysis (DCA), and external validation were employed for comprehensive model evaluation. The XGBoost algorithm exhibited superior performance compared to the other three prediction models. Specifically, within the training set of the internal validation set, the XGBoost algorithm demonstrated an AUC value of 0.990 (0.983-0.996), accuracy of 0.929 (0.923-0.935), sensitivity of 0.983 (0.976-0.990), specificity of 0.918 (0.910-0.927), and F1 value of 0.799 (0.784-0.814). In the validation set of the internal validation set, the XGBoost algorithm recorded an AUC value of 0.941 (0.890-0.991), accuracy of 0.897 (0.882-0.911), sensitivity of 0.898 (0.860-0.937), specificity of 0.875 (0.845-0.905), and F1 value of 0.711 (0.656-0.766). The AUC value for the external validation set was 0.93, indicating robust extrapolative capabilities of the XGBoost prediction model. The HF prediction model post-CME, derived from the XGBoost machine learning algorithm in this study, attests to its elevated predictive accuracy and clinical utility.
在完整结肠系膜切除术(CME)后,心力衰竭(HF)成为一种重要的并发症,对患者的短期和长期预后均产生重大影响。我们研究的主要目的是开发一种机器学习模型,能够识别术前和术中的高危因素,以促进对CME后HF发生情况的预测。我们的研究纳入了一个由1158例结肠癌患者组成的队列,其中包括172例术后发生HF的患者。我们整理了37个特征变量,涵盖患者人口统计学特征、基础病史、术前检查特征、手术类型和术中细节。采用四种不同的机器学习算法——极端梯度提升(XGBoost)、随机森林(RF)、支持向量机(SVM)和k近邻算法(KNN)来构建模型。采用k折交叉验证法、ROC曲线、校准曲线、决策曲线分析(DCA)和外部验证对模型进行综合评估。与其他三个预测模型相比,XGBoost算法表现出更优的性能。具体而言,在内部验证集的训练集中,XGBoost算法的AUC值为0.990(0.983 - 0.996),准确率为0.929(0.923 - 0.935),灵敏度为0.983(0.976 - 0.990),特异度为0.918(0.910 - 0.927),F1值为0.799(0.784 - 0.814)。在内部验证集的验证集中,XGBoost算法的AUC值为0.