School of Traffic Engineering, Kunming University of Science and Technology, Kunming, 650000, China.
Sci Rep. 2022 Feb 21;12(1):2912. doi: 10.1038/s41598-022-06975-1.
Tree-based and deep learning methods can automatically generate useful features. Not only can it enhance the original feature representation, but it can also learn to generate new features. This paper develops a strategy based on Light Gradient Boosting Machine (LightGBM or LGB) and Gated Recurrent Unit (GRU) to generate features to improve the expression ability of limited features. Moreover, a SARIMA-GRU prediction model considering the weekly periodicity is introduced. First, LightGBM is used to learn features and enhance the original features representation; secondly, GRU neural network is used to generate features; finally, the result ensemble is used as the input for prediction. Moreover, the SARIMA-GRU model is constructed for predicting. The GRU prediction consequences are revised by the SARIMA model that a better prediction can be obtained. The experiment was carried out with the data collected by Ride-hailing in Chengdu, and four predicted indicators and two performance indexes are utilized to evaluate the model. The results validate that the model proposed has significant improvements in the accuracy and performance of each component.
基于树的和深度学习方法可以自动生成有用的特征。它不仅可以增强原始特征表示,还可以学习生成新的特征。本文提出了一种基于 Light Gradient Boosting Machine(LightGBM 或 LGB)和门控循环单元(GRU)的策略,以生成特征来提高有限特征的表达能力。此外,还引入了考虑周期间隔的 SARIMA-GRU 预测模型。首先,使用 LightGBM 学习特征并增强原始特征表示;其次,使用 GRU 神经网络生成特征;最后,将结果集成作为预测的输入。此外,构建了 SARIMA-GRU 模型进行预测。通过 SARIMA 模型对 GRU 预测结果进行修正,可以得到更好的预测结果。通过对成都网约车采集的数据进行实验,利用四个预测指标和两个性能指标对模型进行评估。实验结果验证了所提出的模型在各组成部分的准确性和性能方面都有显著提高。