Suppr超能文献

一种具有增强可解释性的用于高速公路交通流量预测的两级分辨率神经网络。

A two-level resolution neural network with enhanced interpretability for freeway traffic forecasting.

作者信息

Kwak Semin, Li Danya, Geroliminis Nikolas

机构信息

Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, USA.

Department of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Sci Rep. 2024 Dec 30;14(1):31624. doi: 10.1038/s41598-024-78148-1.

Abstract

Deep learning models are widely used for traffic forecasting on freeways due to their ability to learn complex temporal and spatial relationships. In particular, graph neural networks, which integrate graph theory into deep learning, have become popular for modeling traffic sensor networks. However, traditional graph convolutional networks (GCNs) face limitations in capturing long-range spatial correlations, which can hinder accurate long-term predictions. To address this issue, we propose the Two-level Resolution Neural Network, which enhances interpretability by introducing two resolution blocks. The first block captures large-scale regional traffic patterns, while the second block, using a GCN, focuses on small-scale spatial correlations, informed by the regional predictions. This structure allows the model to intuitively integrate both local and distant traffic data, improving long-term forecasting. In addition to its predictive capabilities, TwoResNet offers enhanced interpretability, particularly in scenarios involving noisy or incomplete data.

摘要

深度学习模型因其能够学习复杂的时空关系而被广泛用于高速公路交通流量预测。特别是,将图论集成到深度学习中的图神经网络已成为交通传感器网络建模的常用方法。然而,传统的图卷积网络(GCN)在捕捉远距离空间相关性方面存在局限性,这可能会妨碍准确的长期预测。为了解决这个问题,我们提出了两级分辨率神经网络,它通过引入两个分辨率块来增强可解释性。第一个块捕捉大规模区域交通模式,而第二个块使用GCN,在区域预测的基础上关注小规模空间相关性。这种结构使模型能够直观地整合本地和远距离交通数据,改善长期预测。除了预测能力外,TwoResNet还提供了更强的可解释性,特别是在涉及噪声或不完整数据的场景中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验