Suppr超能文献

开发一种深度学习模型,用于在双能CT扫描上自动检测指示痛风的绿色像素。

Development of a deep learning model for the automated detection of green pixels indicative of gout on dual energy CT scan.

作者信息

Faghani Shahriar, Nicholas Rhodes G, Patel Soham, Baffour Francis I, Moassefi Mana, Rouzrokh Pouria, Khosravi Bardia, Powell Garret M, Leng Shuai, Glazebrook Katrina N, Erickson Bradley J, Tiegs-Heiden Christin A

机构信息

Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, MN, USA.

Division of Musculoskeletal Radiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA.

出版信息

Res Diagn Interv Imaging. 2024 Mar 8;9:100044. doi: 10.1016/j.redii.2024.100044. eCollection 2024 Mar.

Abstract

BACKGROUND

Dual-energy CT (DECT) is a non-invasive way to determine the presence of monosodium urate (MSU) crystals in the workup of gout. Color-coding distinguishes MSU from calcium following material decomposition and post-processing. Most software labels MSU as green and calcium as blue. There are limitations in the current image processing methods of segmenting green-encoded pixels. Additionally, identifying green foci is tedious, and automated detection would improve workflow. This study aimed to determine the optimal deep learning (DL) algorithm for segmenting green-encoded pixels of MSU crystals on DECTs.

METHODS

DECT images of positive and negative gout cases were retrospectively collected. The dataset was split into train ( = 28) and held-out test ( = 30) sets. To perform cross-validation, the train set was split into seven folds. The images were presented to two musculoskeletal radiologists, who independently identified green-encoded voxels. Two 3D Unet-based DL models, Segresnet and SwinUNETR, were trained, and the Dice similarity coefficient (DSC), sensitivity, and specificity were reported as the segmentation metrics.

RESULTS

Segresnet showed superior performance, achieving a DSC of 0.9999 for the background pixels, 0.7868 for the green pixels, and an average DSC of 0.8934 for both types of pixels, respectively. According to the post-processed results, the Segresnet reached voxel-level sensitivity and specificity of 98.72 % and 99.98 %, respectively.

CONCLUSION

In this study, we compared two DL-based segmentation approaches for detecting MSU deposits in a DECT dataset. The Segresnet resulted in superior performance metrics. The developed algorithm provides a potential fast, consistent, highly sensitive and specific computer-aided diagnosis tool. Ultimately, such an algorithm could be used by radiologists to streamline DECT workflow and improve accuracy in the detection of gout.

摘要

背景

双能CT(DECT)是痛风检查中确定尿酸钠(MSU)晶体存在与否的一种非侵入性方法。在物质分解和后处理之后,通过颜色编码可将MSU与钙区分开来。大多数软件将MSU标记为绿色,将钙标记为蓝色。当前用于分割绿色编码像素的图像处理方法存在局限性。此外,识别绿色病灶很繁琐,自动化检测将改善工作流程。本研究旨在确定用于分割DECT上MSU晶体绿色编码像素的最佳深度学习(DL)算法。

方法

回顾性收集痛风阳性和阴性病例的DECT图像。数据集被分为训练集(=28)和留出测试集(=30)。为了进行交叉验证,将训练集分为七折。将图像呈现给两位肌肉骨骼放射科医生,他们独立识别绿色编码的体素。训练了两个基于3D Unet的DL模型Segresnet和SwinUNETR,并报告了Dice相似系数(DSC)、敏感性和特异性作为分割指标。

结果

Segresnet表现出卓越的性能,背景像素的DSC为0.9999,绿色像素的DSC为0.7868,两种类型像素的平均DSC为0.8934。根据后处理结果,Segresnet的体素级敏感性和特异性分别达到98.72%和99.98%。

结论

在本研究中,我们比较了两种基于DL的分割方法,用于检测DECT数据集中的MSU沉积物。Segresnet产生了卓越的性能指标。所开发的算法提供了一种潜在的快速、一致、高度敏感和特异的计算机辅助诊断工具。最终,放射科医生可以使用这样的算法来简化DECT工作流程,并提高痛风检测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5096/11265492/5e401d8a7668/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验