Suppr超能文献

一种基于深度神经网络的用于冠状病毒疾病分类的认知框架。

A cognitive framework based on deep neural network for classification of coronavirus disease.

作者信息

Kumari Sapna, Bhatia Munish

机构信息

Research Scholar, Department of Computer Science and Engineering, Lovely Professional University, Phagwara, India.

Assistant Professor Department of Computer Science and Engineering, Lovely Professional University, Phagwara, India.

出版信息

J Ambient Intell Humaniz Comput. 2022 Feb 13:1-15. doi: 10.1007/s12652-022-03756-6.

Abstract

Since December 2019, the pandemic of coronavirus (CorV) is spreading all over the world. CorV is a viral disease that results in ill effects on humans and is recognized as public health concern globally. The objective of the paper is to diagnose and prevent the spread of CorV. Spatio-temporal based fine-tuned deep learning model is used for detecting Corv disease so that the prevention measures could be taken on time. Deep learning is an emerging technique that has an extensive approach to prediction. The proposed system presents a hybrid model using chest X-ray images to early identify the CorV suspected people so that necessary action can be taken timely. The proposed work consists of various deep learning neural network algorithms for the identification of CorV patients. A decision model with enhanced accuracy has been presented for early identification of the suspected CorV patients and time-sensitive decision-making. A SQueezeNet model is used for the classification of the CorV patient. An experiment has been conducted for validation purposes to register an average accuracy of 97.8%. Moreover, the outcomes of statistical parameters are compared with numerous state-of-the-art decision-making models in the current domain for performance assessment.

摘要

自2019年12月以来,冠状病毒(CorV)大流行正在全球蔓延。CorV是一种对人类产生不良影响的病毒性疾病,被公认为是全球公共卫生问题。本文的目的是诊断和预防CorV的传播。基于时空的微调深度学习模型用于检测CorV疾病,以便及时采取预防措施。深度学习是一种新兴技术,具有广泛的预测方法。所提出的系统提出了一种使用胸部X光图像的混合模型,以早期识别CorV疑似人群,从而能够及时采取必要行动。所提出的工作包括用于识别CorV患者的各种深度学习神经网络算法。提出了一种具有更高准确性的决策模型,用于早期识别疑似CorV患者和进行时间敏感型决策。一个SQueezeNet模型用于对CorV患者进行分类。为了验证目的进行了一项实验,平均准确率达到了97.8%。此外,将统计参数的结果与当前领域众多先进的决策模型进行比较,以进行性能评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a42/8853181/d38748c58286/12652_2022_3756_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验