Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea.
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11465-11473. doi: 10.1021/acsami.1c24342. Epub 2022 Feb 23.
The pulp and paper manufacturers generate approximately 50 million metric tons of lignin per annum, most of which has been abandoned or incinerated because of lignin's recalcitrant nature. Here, we report bias-free photoelectrochemical (PEC) oxidation of lignin coupled with asymmetric hydrogenation of C═C bonds. The PEC platform consists of a hematite (α-FeO) photoanode and a silicon photovoltaic-wired mesoporous indium tin oxide (Si/ITO) photocathode. We substantiate a new function of photoelectroactivated α-FeO to extract electrons from lignin. The extracted electrons are transferred to the Si/ITO photocathode for regenerating synthetic nicotinamide cofactor analogues (mNADHs). We demonstrate that the reduction kinetics of mNADs depend on their reduction peak potentials. The regenerated mNADHs activate ene-reductases from the old yellow enzyme (OYE) family, which catalyze enantioselective reduction of α,β-unsaturated hydrocarbons. This lignin-fueled biocatalytic PEC system exhibits an excellent OYE's turnover frequency and total turnover number for photobiocatalytic trans-hydrogenation through cofactor regeneration. This work presents the first example of PEC regeneration of mNADHs and opens up a sustainable route for bias-free chemical synthesis using renewable lignin waste as an electron feedstock.
制浆造纸企业每年产生约 5000 万吨木质素,其中大部分由于木质素的顽固性而被废弃或焚烧。在这里,我们报告了无偏光电化学(PEC)氧化木质素与 C═C 键不对称氢化的耦合。PEC 平台由赤铁矿(α-FeO)光阳极和硅光伏线多孔铟锡氧化物(Si/ITO)光阴极组成。我们证实了光激活的α-FeO 从木质素中提取电子的新功能。提取的电子被转移到 Si/ITO 光阴极,用于再生合成烟酰胺辅酶类似物(mNADHs)。我们证明了 mNAD 的还原动力学取决于它们的还原峰电位。再生的 mNADHs 激活来自老黄酶(OYE)家族的烯还原酶,该酶催化α,β-不饱和烃的对映选择性还原。这个由木质素驱动的生物催化 PEC 系统展示了 OYE 的出色周转率和总周转率,通过辅因子再生实现了光生物催化反氢转移。这项工作展示了 PEC 再生 mNADHs 的第一个例子,并为使用可再生木质素废物作为电子原料进行无偏化学合成开辟了可持续的途径。