Suppr超能文献

用于析氢的光电催化进入有机合成领域。

Photoelectrocatalysis for Hydrogen Evolution Ventures into the World of Organic Synthesis.

作者信息

Sportelli Giuseppe, Marchi Miriam, Fornasiero Paolo, Filippini Giacomo, Franco Federico, Melchionna Michele

机构信息

Department of Chemical and Pharmaceutical Sciences University of Trieste via Licio Giorgieri 1 Trieste 34127 Italy.

Department of Science, Technology and Society University School for Advanced Studies IUSS Pavia Piazza della Vittoria 15 Pavia 27100 Italy.

出版信息

Glob Chall. 2024 Apr 14;8(6):2400012. doi: 10.1002/gch2.202400012. eCollection 2024 Jun.

Abstract

The use of light as a catalytic prompt for the synthesis of industrial relevant compounds is widely explored in the past years, with a special consideration over the hydrogen evolution reaction (HER). However, semiconductors for heterogeneous photocatalysis suffer from fast charge recombination and, consequently, low solar-to-hydrogen efficiency. These drawbacks can be mitigated by coupling photocatalysts with an external circuit that can physically separate the photogenerated charge carriers (electrons and holes). For this reason, photoelectrochemical (PEC) production of hydrogen is under the spotlight as promising green and sustainable technique and widely investigated in numerous publications. However, considering that a significant fraction of the hydrogen produced is used for reduction processes, the development of PEC devices for direct in situ hydrogenation can address the challenges associated with hydrogen storage and distribution. This Perspective aims at highlighting the fundamental aspects of HER from PEC systems, and how these can be harnessed toward the implementation of suitable settings for the hydrogenation of organic compounds of industrial value.

摘要

在过去几年中,光作为合成工业相关化合物的催化促进剂的应用得到了广泛探索,其中对析氢反应(HER)给予了特别关注。然而,用于多相光催化的半导体存在快速电荷复合的问题,因此太阳能到氢能的效率较低。通过将光催化剂与外部电路耦合,可以减轻这些缺点,外部电路可以物理分离光生载流子(电子和空穴)。因此,光电化学(PEC)制氢作为一种有前景的绿色可持续技术备受关注,并在众多出版物中得到广泛研究。然而,考虑到所产生的大部分氢气用于还原过程,开发用于直接原位氢化的PEC装置可以解决与氢气储存和运输相关的挑战。本观点旨在强调PEC系统中HER的基本方面,以及如何利用这些方面来实现适合工业价值有机化合物氢化的合适设置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7004/11165553/e5fe8c8eb62c/GCH2-8-2400012-g013.jpg

相似文献

1
Photoelectrocatalysis for Hydrogen Evolution Ventures into the World of Organic Synthesis.
Glob Chall. 2024 Apr 14;8(6):2400012. doi: 10.1002/gch2.202400012. eCollection 2024 Jun.
2
Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
Acc Chem Res. 2013 Aug 20;46(8):1900-9. doi: 10.1021/ar300227e. Epub 2013 Mar 26.
3
Effective Charge Carrier Utilization in Photocatalytic Conversions.
Acc Chem Res. 2016 May 17;49(5):911-21. doi: 10.1021/acs.accounts.6b00036. Epub 2016 Apr 14.
4
A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.
J Adv Res. 2021 Aug 13;36:15-26. doi: 10.1016/j.jare.2021.08.006. eCollection 2022 Feb.
5
Thermal Effect on Photoelectrochemical Water Splitting Toward Highly Solar to Hydrogen Efficiency.
ChemSusChem. 2023 Jun 9;16(11):e202202017. doi: 10.1002/cssc.202202017. Epub 2023 Apr 5.
6
Organic Upgrading through Photoelectrochemical Reactions: Toward Higher Profits.
Small Methods. 2024 Feb;8(2):e2300315. doi: 10.1002/smtd.202300315. Epub 2023 Jun 29.
7
Bridge engineering in photocatalysis and photoelectrocatalysis.
Nanoscale. 2020 Mar 14;12(10):5764-5791. doi: 10.1039/c9nr10511e. Epub 2020 Mar 4.
8
Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
Acc Chem Res. 2016 Jun 21;49(6):1121-9. doi: 10.1021/acs.accounts.6b00045. Epub 2016 May 26.
9
Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
Small. 2018 Jun;14(23):e1704179. doi: 10.1002/smll.201704179. Epub 2018 Mar 25.
10
Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review.
Chemosphere. 2021 Jun;273:128503. doi: 10.1016/j.chemosphere.2020.128503. Epub 2020 Oct 6.

引用本文的文献

1
Strong Acid-Mediated Proton Transfer via Water Tunneling Fosters Hydrogen Evolution Reaction on MoS Derivatives under Alkaline Conditions.
ACS Catal. 2025 Jul 18;15(15):13278-13287. doi: 10.1021/acscatal.5c02610. eCollection 2025 Aug 1.
2
Paired Chemical Upgrading in Photoelectrochemical Cells.
JACS Au. 2025 Apr 23;5(5):2061-2075. doi: 10.1021/jacsau.5c00115. eCollection 2025 May 26.
3
Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants?
Molecules. 2024 Sep 29;29(19):4623. doi: 10.3390/molecules29194623.

本文引用的文献

1
Developing electrochemical hydrogenation towards industrial application.
Chem Soc Rev. 2023 Oct 30;52(21):7305-7332. doi: 10.1039/d3cs00419h.
3
Platinum and Frustrated Lewis Pairs on Ceria as Dual-Active Sites for Efficient Reverse Water-Gas Shift Reaction at Low Temperatures.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202305661. doi: 10.1002/anie.202305661. Epub 2023 Aug 4.
4
Tandem cells for unbiased photoelectrochemical water splitting.
Chem Soc Rev. 2023 Jul 17;52(14):4644-4671. doi: 10.1039/d3cs00145h.
5
Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?
Glob Chall. 2022 Dec 16;7(3):2200165. doi: 10.1002/gch2.202200165. eCollection 2023 Mar.
6
Contemporary photoelectrochemical strategies and reactions in organic synthesis.
Chem Commun (Camb). 2023 Mar 21;59(24):3487-3506. doi: 10.1039/d3cc00437f.
9
Hydrogen Spillover and Its Relation to Hydrogenation: Observations on Structurally Defined Single-Atom Sites.
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202208237. doi: 10.1002/anie.202208237. Epub 2022 Aug 3.
10
Unbiased Photoelectrode Interfaces for Solar Coupling of Lignin Oxidation with Biocatalytic C═C Bond Hydrogenation.
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11465-11473. doi: 10.1021/acsami.1c24342. Epub 2022 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验