Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Centro de Investigacións Científicas Avanzadas and Departamento de Quıímica, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia Spain.
Inorg Chem. 2022 Mar 7;61(9):4130-4142. doi: 10.1021/acs.inorgchem.1c03908. Epub 2022 Feb 23.
Fluorine-19 MRI is increasingly being considered as a tool for biomolecular imaging, but the very poor sensitivity of this technique has limited most applications. Previous studies have long established that increasing the sensitivity of F molecular probes requires increasing the number of fluorine nuclei per probe as well as decreasing their longitudinal relaxation time. The latter is easily achieved by positioning the fluorine atoms in close proximity to a paramagnetic metal ion such as a lanthanide(III). Increasing the number of fluorine atoms per molecule, however, is only useful inasmuch as all of the fluorine nuclei are chemically equivalent. Previous attempts to achieve this equivalency have focused on designing highly symmetric and rigid fluorinated macrocyclic ligands. A much simpler approach consists of exploiting highly fluxional lanthanide complexes with open coordination sites that have a high affinity for phosphated and phosphonated species. Computational studies indicate that Ln-TREN-MAM is highly fluxional, rapidly interconverting between at least six distinct isomers. In neutral water at room temperature, Ln-TREN-MAM binds two or three equivalents of fluorinated phosphonates. The close proximity of the F nuclei to the Ln center in the ternary complex decreases the relaxation times of the fluorine nuclei up to 40-fold. Advantageously, the fluorophosphonate-bound lanthanide complex is also highly fluxional such that all F nuclei are chemically equivalent and display a single F signal with a small LIS. Dynamic averaging of fluxional fluorinated supramolecular assemblies thus produces effective F MR systems.
19 氟 MRI 正越来越多地被认为是一种生物分子成像工具,但该技术的灵敏度非常差,限制了大多数应用。以前的研究长期以来一直确立,提高 F 分子探针的灵敏度需要增加每个探针的氟核数量,同时减少它们的纵向弛豫时间。后一种方法很容易通过将氟原子置于靠近顺磁金属离子(如镧系元素(III))的位置来实现。然而,增加每个分子中的氟原子数量只有在所有氟核都是化学等价的情况下才有用。以前为实现这种等效性所做的尝试主要集中在设计高度对称和刚性的氟化大环配体上。一个更简单的方法是利用具有开放配位点的高流动性镧系配合物,这些配位点对磷酸化和膦酸化物质具有高亲和力。计算研究表明,Ln-TREN-MAM 具有高度流动性,在至少六种不同的异构体之间迅速互变。在室温下的中性水中,Ln-TREN-MAM 结合两个或三个当量的氟化膦酸盐。在三元配合物中,氟核与 Ln 中心的接近程度将氟核的弛豫时间降低了 40 倍。有利的是,与氟膦酸盐结合的镧系元素配合物也具有高度流动性,使得所有 F 核都是化学等价的,并显示出具有小 LIS 的单个 F 信号。动态平均化的流动氟化超分子组装从而产生有效的 F MR 系统。