Vargova Ingrid, Kriska Jan, Kwok Jessica C F, Fawcett James W, Jendelova Pavla
Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia.
Second Faculty of Medicine, Charles University, Prague, Czechia.
Front Cell Neurosci. 2022 Feb 7;16:827628. doi: 10.3389/fncel.2022.827628. eCollection 2022.
Spinal cord interneurons (SpINs) are highly diverse population of neurons that play a significant role in circuit reorganization and spontaneous recovery after spinal cord injury. Regeneration of SpIN axons across rodent spinal injuries has been demonstrated after modification of the environment and neurotrophin treatment, but development of methods to enhance the intrinsic regenerative ability of SpINs is needed. There is a lack of described models of spinal cord neurons in which to develop new regeneration treatments. For this reason, we developed a new model of mouse primary spinal cord neuronal culture in which to analyze maturation, morphology, physiology, connectivity and regeneration of identified interneurons. Isolated from E14 mice, the neurons mature over 15 days , demonstrated by expression of maturity markers, electrophysiological patch-clamp recordings, and formation of synapses. The neurons express markers of SpINs, including Tlx3, Lmx1b, Lbx1, Chx10, and Pax2. The neurons demonstrate distinct morphologies and some form perineuronal nets in long-term cultivation. Live neurons in various maturation stages were axotomized, using a 900 nm multiphoton laser and their fate was observed overnight. The percentage of axons that regenerated declined with neuronal maturity. This model of SpINs will be a valuable tool in future regenerative, developmental, and functional studies alongside existing models using cortical or hippocampal neurons.
脊髓中间神经元(SpINs)是高度多样化的神经元群体,在脊髓损伤后的神经回路重组和自发恢复中发挥着重要作用。在对环境进行改造和给予神经营养因子治疗后,已证实SpIN轴突可跨越啮齿动物的脊髓损伤进行再生,但仍需要开发增强SpINs内在再生能力的方法。目前缺乏用于开发新的再生治疗方法的脊髓神经元模型。因此,我们开发了一种新的小鼠原代脊髓神经元培养模型,用于分析特定中间神经元的成熟、形态、生理、连接性和再生情况。这些神经元从E14小鼠中分离出来,在15天内成熟,这通过成熟标志物的表达、电生理膜片钳记录和突触形成得以证明。这些神经元表达SpINs的标志物,包括Tlx3、Lmx1b、Lbx1、Chx10和Pax2。在长期培养中,这些神经元表现出不同的形态,有些还形成了神经元周围网络。使用900纳米多光子激光对处于不同成熟阶段的活神经元进行轴突切断,并对其命运进行了 overnight观察。再生轴突的百分比随着神经元成熟度的增加而下降。与现有的使用皮质或海马神经元的模型一起,这个SpINs模型将成为未来再生、发育和功能研究中的一个有价值的工具。