Suppr超能文献

无标记的神经元活细胞长期成像方法:新机遇。

Label-Free Long-Term Methods for Live Cell Imaging of Neurons: New Opportunities.

机构信息

Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.

Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.

出版信息

Biosensors (Basel). 2023 Mar 20;13(3):404. doi: 10.3390/bios13030404.

Abstract

Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures responsible for inter-neuronal signaling, was described in 1988 by Dotti, Sullivan and Banker in a milestone paper that continues to be cited 30 years later. In the following decades, numerous fluorescently labeled tags and dyes were developed for live cell imaging, providing tremendous advancements in terms of resolution, acquisition speed and the ability to track specific cell structures. However, long-term recordings with fluorescence-based approaches remain challenging because of light-induced phototoxicity and/or interference of tags with cell physiology (e.g., perturbed cytoskeletal dynamics) resulting in compromised cell viability leading to cell death. Therefore, a label-free approach remains the most desirable method in long-term imaging of living neurons. In this paper we will focus on label-free high-resolution methods that can be successfully used over a prolonged period. We propose novel tools such as scanning ion conductance microscopy (SICM) or digital holography microscopy (DHM) that could provide new insights into live cell dynamics during neuronal development and regeneration after injury.

摘要

延时荧光显微镜结合体外神经元培养技术为发展神经科学领域做出了重要贡献。1988 年,Dotti、Sullivan 和 Banker 在一篇里程碑式的论文中描述了神经元极性的建立,即轴突和树突的形成,这些关键结构负责神经元间的信号传递。30 年后的今天,这篇论文仍被大量引用。在接下来的几十年里,许多荧光标记物和染料被开发用于活细胞成像,在分辨率、采集速度和跟踪特定细胞结构的能力方面取得了巨大的进步。然而,基于荧光的长期记录仍然具有挑战性,因为光诱导的光毒性和/或标签对细胞生理学的干扰(例如,细胞骨架动力学的破坏)会导致细胞活力下降,从而导致细胞死亡。因此,无标记方法仍然是长期成像活神经元的最理想方法。本文将重点介绍可长时间成功使用的无标记高分辨率方法。我们提出了一些新的工具,如扫描离子电导显微镜(SICM)或数字全息显微镜(DHM),它们可以为神经元发育过程中的活细胞动力学以及损伤后的再生提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b2a/10046152/bb65ed67d019/biosensors-13-00404-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验