Suppr超能文献

电压门控钠通道的动力学和热力学建模

Kinetic and thermodynamic modeling of a voltage-gated sodium channel.

作者信息

Almog Mara, Degani-Katzav Nurit, Korngreen Alon

机构信息

The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 52900, Ramat Gan, Israel.

The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 52900, Ramat Gan, Israel.

出版信息

Eur Biophys J. 2022 Apr;51(3):241-256. doi: 10.1007/s00249-022-01591-3. Epub 2022 Feb 24.

Abstract

Like all biological and chemical reactions, ion channel kinetics are highly sensitive to changes in temperature. Therefore, it is prudent to investigate channel dynamics at physiological temperatures. However, most ion channel investigations are performed at room temperature due to practical considerations, such as recording stability and technical limitations. This problem is especially severe for the fast voltage-gated sodium channel, whose activation kinetics are faster than the time constant of the standard patch-clamp amplifier at physiological temperatures. Thus, biologically detailed simulations of the action potential generation evenly scale the kinetic models of voltage-gated channels acquired at room temperature. To quantitatively study voltage-gated sodium channels' temperature sensitivity, we recorded sodium currents from nucleated patches extracted from the rat's layer five neocortical pyramidal neurons at several temperatures from 13.5 to 30 °C. We use these recordings to model the kinetics of the voltage-gated sodium channel as a function of temperature. We show that the temperature dependence of activation differs from that of inactivation. Furthermore, the data indicate that the sustained current has a different temperature dependence than the fast current. Our kinetic and thermodynamic analysis of the current provided a numerical model spanning the entire temperature range. This model reproduced vital features of channel activation and inactivation. Furthermore, the model also reproduced action potential dependence on temperature. Thus, we provide an essential building block for the generation of biologically detailed models of cortical neurons.

摘要

与所有生物和化学反应一样,离子通道动力学对温度变化高度敏感。因此,在生理温度下研究通道动力学是明智的。然而,出于实际考虑,如记录稳定性和技术限制,大多数离子通道研究是在室温下进行的。对于快速电压门控钠通道来说,这个问题尤为严重,因为在生理温度下,其激活动力学比标准膜片钳放大器的时间常数还要快。因此,动作电位产生的生物学细节模拟会均匀地缩放室温下获得的电压门控通道的动力学模型。为了定量研究电压门控钠通道的温度敏感性,我们在13.5至30°C的几个温度下,记录了从大鼠第五层新皮质锥体神经元提取的有核膜片上的钠电流。我们利用这些记录来模拟电压门控钠通道的动力学与温度的函数关系。我们发现激活的温度依赖性与失活的不同。此外,数据表明持续电流与快速电流具有不同的温度依赖性。我们对电流进行的动力学和热力学分析提供了一个涵盖整个温度范围的数值模型。该模型重现了通道激活和失活的关键特征。此外,该模型还重现了动作电位对温度的依赖性。因此,我们为生成皮质神经元的生物学细节模型提供了一个重要的构建模块。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验