University Hospital , RWTH Aachen University, Institute of Neurophysiology, Aachen, Germany.
Nanion Technologies GmbH , München, Germany.
J Gen Physiol. 2023 Sep 4;155(9). doi: 10.1085/jgp.202213312. Epub 2023 Aug 2.
Voltage-gated sodium channels (Nav) are key players in excitable tissues with the capability to generate and propagate action potentials. Mutations in the genes encoding Navs can lead to severe inherited diseases, and some of these so-called channelopathies show temperature-sensitive phenotypes, for example, paramyotonia congenita, Brugada syndrome, febrile seizure syndromes, and inherited pain syndromes like erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). Nevertheless, most investigations of mutation-induced gating effects have been conducted at room temperature, and thus the role of cooling or warming in channelopathies remains poorly understood. Here, we investigated the temperature sensitivity of four Nav subtypes: Nav1.3, Nav1.5, Nav1.6, and Nav1.7, and two mutations in Nav1.7 causing IEM (Nav1.7/L823R) and PEPD (Nav1.7/I1461T) expressed in cells of the human embryonic kidney cell line using an automated patch clamp system. Our experiments at 15°C, 25°C, and 35°C revealed a shift of the voltage dependence of activation to more hyperpolarized potentials with increasing temperature for all investigated subtypes. Nav1.3 exhibited strongly slowed inactivation kinetics compared with the other subtypes that resulted in enhanced persistent current, especially at 15°C, indicating a possible role in cold-induced hyperexcitability. Impaired fast inactivation of Nav1.7/I1461T was significantly enhanced by a cooling temperature of 15°C. The subtype-specific modulation as well as the intensified mutation-induced gating changes stress the importance to consider temperature as a regulator for channel gating and its impact on cellular excitability as well as disease phenotypes.
电压门控钠离子通道(Nav)是可产生和传播动作电位的兴奋组织中的关键参与者。编码 Nav 的基因突变可导致严重的遗传性疾病,其中一些所谓的通道病表现出对温度敏感的表型,例如先天性肌强直、Brugada 综合征、热性惊厥综合征以及遗传性疼痛综合征,如红斑性肢痛症(IEM)和阵发性剧痛障碍(PEPD)。然而,大多数关于突变诱导门控效应的研究都是在室温下进行的,因此,冷却或加热在通道病中的作用仍知之甚少。在这里,我们使用自动化膜片钳系统研究了四种 Nav 亚型(Nav1.3、Nav1.5、Nav1.6 和 Nav1.7)以及两种导致 IEM(Nav1.7/L823R)和 PEPD(Nav1.7/I1461T)的 Nav1.7 突变在人胚肾细胞系中的细胞中的温度敏感性。我们在 15°C、25°C 和 35°C 的实验表明,所有研究的亚型的激活的电压依赖性向更超极化的电位移动,随着温度的升高而增加。Nav1.3 的失活动力学明显慢于其他亚型,导致持续电流增强,尤其是在 15°C 时,这表明其可能在冷诱导的过度兴奋中起作用。Nav1.7/I1461T 的快速失活受损在 15°C 的冷却温度下显著增强。亚型特异性调制以及强化的突变诱导门控变化强调了将温度视为通道门控及其对细胞兴奋性和疾病表型的影响的调节剂的重要性。