Laboratoire Nanotechnologies et Nanosystèmes (LN2-IRL 3463), Institut Interdisciplinaire d'Innovation Technologique (3IT), 3000 Boulevard de l'université, Sherbrooke, QC J1K OA5, Canada.
Institut Jean Lamour, F-54000 Nancy, France.
Biosensors (Basel). 2022 Jan 24;12(2):61. doi: 10.3390/bios12020061.
Love wave (L-SAW) sensors have been used to probe cell monolayers, but their application to detect changes beyond the focal adhesion points on cell monolayers, as viscosity changes on the cytoskeleton, has not been explored. In this work we present for the first time a Love wave sensor with tuned penetration depth and sensitivity to potentially detect mechanical changes beyond focal adhesion points of cell monolayers. We designed and fabricated a Love wave sensor operating at 30 MHz with sensitivity to detect viscous changes between 0.89 and 3.3 cP. The Love wave sensor was modeled using an acoustic transmission line model, whereas the response of interdigital transducers (IDTs) was modeled with the Campbell's cross-field circuit model. Our design uses a substrate with a high electromechanical coupling coefficient (LiNbO 36Y-X), and an 8-µm polymeric guiding layer (SU-8). The design aims to overcome the high insertion losses of viscous liquid environments, and the loss of sensitivity due to the low frequency. The fabricated sensor was tested in a fluidic chamber glued directly to the SU-8 guiding layer. Our experiments with liquids of viscosity similar to those expected in cell monolayers showed a measurable sensor response. In addition, experimentation with SaOs-2 cells within a culture medium showed measurable responses. These results can be of interest for the development of novel cell-based biosensors, and novel characterization tools for cell monolayers.
声表面波(L-SAW)传感器已被用于探测细胞单层,但它们在探测细胞单层上的黏附点之外的变化方面的应用,如细胞骨架上的黏度变化,尚未得到探索。在这项工作中,我们首次提出了一种具有可调穿透深度和灵敏度的声表面波传感器,有望探测细胞单层上黏附点之外的机械变化。我们设计并制造了一个工作在 30 MHz 的声表面波传感器,其灵敏度可检测 0.89 至 3.3 cP 之间的黏滞变化。声表面波传感器使用声学传输线模型进行建模,而叉指换能器(IDT)的响应则使用坎贝尔交叉场电路模型进行建模。我们的设计使用具有高机电耦合系数(LiNbO 36Y-X)的基底和 8 µm 厚的聚合物导波层(SU-8)。该设计旨在克服粘性液体环境中的高插入损耗以及由于频率低而导致的灵敏度损失。所制造的传感器在直接粘接到 SU-8 导波层的流道腔室中进行了测试。我们在与细胞单层中预期的黏度相似的液体中的实验显示出可测量的传感器响应。此外,在培养基中培养的 SaOs-2 细胞的实验也显示出可测量的响应。这些结果可能对新型基于细胞的生物传感器的开发以及细胞单层的新型特性化工具具有重要意义。