文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

叶酸修饰的磁性纳米颗粒作为乳腺癌诊断的 MRI 对比剂的功能化研究。

Functionalization of Magnetic Nanoparticles by Folate as Potential MRI Contrast Agent for Breast Cancer Diagnostics.

机构信息

Department of Biotechnology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan 81746-73441, Iran.

Faculty of Physics, University of Isfahan, Isfahan 81746-73441, Iran.

出版信息

Molecules. 2020 Sep 4;25(18):4053. doi: 10.3390/molecules25184053.


DOI:10.3390/molecules25184053
PMID:32899812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7570917/
Abstract

In recent years, the intrinsic magnetic properties of magnetic nanoparticles (MNPs) have made them one of the most promising candidates for magnetic resonance imaging (MRI). This study aims to evaluate the effect of different coating agents (with and without targeting agents) on the magnetic property of MNPs. In detail, iron oxide nanoparticles (IONPs) were prepared by the polyol method. The nanoparticles were then divided into two groups, one of which was coated with silica (SiO) and hyperbranched polyglycerol (HPG) (SPION@SiO@HPG); the other was covered by HPG alone (SPION@HPG). In the following section, folic acid (FA), as a targeting agent, was attached on the surface of nanoparticles. Physicochemical properties of nanostructures were characterized using Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). TEM results showed that SPION@HPG was monodispersed with the average size of about 20 nm, while SPION@SiO@HPG had a size of about 25 nm. Moreover, HPG coated nanoparticles had much lower magnetic saturation than the silica coated ones. The MR signal intensity of the nanostructures showed a relation between increasing the nanoparticle concentrations inside the MCF-7 cells and decreasing the signal related to the relaxation time. The comparison of coating showed that SPION@SiO@HPG (with/without a targeting agent) had significantly higher value in comparison to FeO@HPG. Based on the results of this study, the FeO@SiO@HPG-FA nanoparticles have shown the best magnetic properties, and can be considered promising contrast agents for magnetic resonance imaging applications.

摘要

近年来,磁性纳米粒子(MNPs)的固有磁性能使其成为磁共振成像(MRI)最有前途的候选者之一。本研究旨在评估不同涂层剂(有和没有靶向剂)对 MNPs 磁性能的影响。具体而言,通过多元醇法制备氧化铁纳米粒子(IONPs)。然后将纳米粒子分为两组,一组用硅(SiO)和超支化聚甘油(HPG)进行涂层(SPION@SiO@HPG);另一组仅用 HPG 覆盖(SPION@HPG)。在接下来的部分中,叶酸(FA)作为靶向剂被附着在纳米粒子的表面上。使用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)和振动样品磁强计(VSM)对纳米结构的物理化学性质进行了表征。TEM 结果表明,SPION@HPG 呈单分散性,平均尺寸约为 20nm,而 SPION@SiO@HPG 的尺寸约为 25nm。此外,HPG 涂层纳米粒子的磁饱和强度远低于 SiO 涂层纳米粒子。纳米结构的磁共振信号强度与 MCF-7 细胞内纳米粒子浓度的增加和与 T2 弛豫时间相关的信号的降低有关。涂层的比较表明,SPION@SiO@HPG(有/没有靶向剂)的 值明显高于 FeO@HPG。基于这项研究的结果,FeO@SiO@HPG-FA 纳米粒子表现出了最佳的磁性能,可以被认为是磁共振成像应用中很有前途的对比剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/f4f83b848627/molecules-25-04053-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/8596cde717d5/molecules-25-04053-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/7a2b33891443/molecules-25-04053-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/2f99c3f36aed/molecules-25-04053-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/7f7d1b01ec66/molecules-25-04053-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/81f115c2092f/molecules-25-04053-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/9d95e3e484f6/molecules-25-04053-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/6d7ca051afc9/molecules-25-04053-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/4291360ce938/molecules-25-04053-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/fa5916d5ac8b/molecules-25-04053-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/f4f83b848627/molecules-25-04053-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/8596cde717d5/molecules-25-04053-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/7a2b33891443/molecules-25-04053-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/2f99c3f36aed/molecules-25-04053-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/7f7d1b01ec66/molecules-25-04053-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/81f115c2092f/molecules-25-04053-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/9d95e3e484f6/molecules-25-04053-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/6d7ca051afc9/molecules-25-04053-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/4291360ce938/molecules-25-04053-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/fa5916d5ac8b/molecules-25-04053-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ae8/7570917/f4f83b848627/molecules-25-04053-g010.jpg

相似文献

[1]
Functionalization of Magnetic Nanoparticles by Folate as Potential MRI Contrast Agent for Breast Cancer Diagnostics.

Molecules. 2020-9-4

[2]
Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy.

Colloids Surf B Biointerfaces. 2015-2-1

[3]
Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-9-5

[4]
Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

J Colloid Interface Sci. 2017-3-15

[5]
The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study.

Daru. 2015-9-17

[6]
A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis.

Dalton Trans. 2016-2-14

[7]
Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity.

Int J Nanomedicine. 2012-6-11

[8]
Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer.

J Drug Target. 2020-1

[9]
Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles.

Colloids Surf B Biointerfaces. 2016-5-1

[10]
Multifunctional superparamagnetic fe3O4@SiO2 core/shell nanoparticles: design and application for cell imaging.

J Biomed Nanotechnol. 2014-2

引用本文的文献

[1]
Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm.

Sci Rep. 2025-7-16

[2]
Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis.

Chem Sci. 2024-1-17

[3]
Multimodal Radiobioconjugates of Magnetic Nanoparticles Labeled with Sc and Sc for Theranostic Application.

Pharmaceutics. 2023-3-5

[4]
Synthesis of Highly Monodisperse Nickel and Nickel Phosphide Nanoparticles.

Nanomaterials (Basel). 2022-9-14

[5]
Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases.

J Nanobiotechnology. 2022-8-31

[6]
Theranostic Applications of an Ultra-Sensitive and Magnetic Resonance Contrast Agent Based on Cobalt Ferrite Spinel Nanoparticles.

Cancers (Basel). 2022-8-20

[7]
Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment.

PLoS One. 2022

[8]
Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer.

ACS Appl Bio Mater. 2022-3-21

[9]
pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer.

ACS Appl Bio Mater. 2022-2-21

[10]
SI-ATRP Decoration of Magnetic Nanoparticles with PHEMA and Post-Polymerization Modification with Folic Acid for Tumor Cells' Specific Targeting.

Int J Mol Sci. 2021-12-23

本文引用的文献

[1]
Folic acid-conjugated gold nanorod@polypyrrole@FeO nanocomposites for targeted MR/CT/PA multimodal imaging and chemo-photothermal therapy.

RSC Adv. 2019-6-17

[2]
In vivo gene delivery mediated by non-viral vectors for cancer therapy.

J Control Release. 2020-9-10

[3]
Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration.

Mater Sci Eng C Mater Biol Appl. 2019-10-31

[4]
Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging.

J Colloid Interface Sci. 2019-8-13

[5]
Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing.

Carbohydr Polym. 2019-6-24

[6]
Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images.

Nanomedicine (Lond). 2019-5-3

[7]
A perspective on magnetic core-shell carriers for responsive and targeted drug delivery systems.

Int J Nanomedicine. 2019-3-6

[8]
Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.

Adv Drug Deliv Rev. 2019-1-11

[9]
Magnetic Nanoparticles: Current Trends and Future Aspects in Diagnostics and Nanomedicine.

Curr Drug Metab. 2019

[10]
Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review.

Int J Nanomedicine. 2018-7-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索