Dpto. Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, Spain; Research Center for Information and Communication Technologies (CITIC-UGR), Spain.
Department of Electrical Engineering and Computer Science, University of Stavanger, Norway.
Artif Intell Med. 2024 Oct;156:102969. doi: 10.1016/j.artmed.2024.102969. Epub 2024 Aug 22.
Hematoxylin and Eosin (H&E) color variation among histological images from different laboratories can significantly degrade the performance of Computer-Aided Diagnosis systems. The staining procedure is the primary factor responsible for color variation, and consequently, the methods designed to reduce such variations are designed in concordance with this procedure. In particular, Blind Color Deconvolution (BCD) methods aim to identify the true underlying colors in the image and to separate the tissue structure from the color information. Unfortunately, BCD methods often assume that images are stained solely with pure staining colors (e.g., blue and pink for H&E). This assumption does not hold true when common artifacts such as blood are present, requiring an additional color component to represent them. This is a challenge for color standardization algorithms, which are unable to correctly identify the stains in the image, leading to unexpected results. In this work, we propose a Blood-Robust Bayesian K-Singular Value Decomposition model designed to simultaneously detect blood and extract color from histological images while preserving structural details. We evaluate our method using both synthetic and real images, which contain varying amounts of blood pixels.
苏木精和伊红(H&E)染色在不同实验室的组织学图像之间存在颜色变化,这会显著降低计算机辅助诊断系统的性能。染色过程是导致颜色变化的主要因素,因此旨在减少这种变化的方法是根据该过程设计的。特别是,盲目颜色反卷积(BCD)方法旨在识别图像中的真实基础颜色,并将组织结构与颜色信息分离。不幸的是,当存在常见伪影(例如血液)时,BCD 方法通常假设图像仅用纯染色颜色染色(例如 H&E 的蓝色和粉红色)。当存在常见伪影(例如血液)时,这种假设并不成立,需要额外的颜色分量来表示它们。这对颜色标准化算法来说是一个挑战,因为这些算法无法正确识别图像中的染色剂,导致出现意外结果。在这项工作中,我们提出了一种稳健的贝叶斯 K-奇异值分解模型,旨在同时检测血液并从组织学图像中提取颜色,同时保留结构细节。我们使用包含不同数量血液像素的合成和真实图像来评估我们的方法。