Suppr超能文献

基于广义超高斯先验和贝叶斯推断的组织学图像盲色彩反卷积、归一化和分类。

Blind color deconvolution, normalization, and classification of histological images using general super Gaussian priors and Bayesian inference.

机构信息

Dpto. Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, Spain.

Dpto. de Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain.

出版信息

Comput Methods Programs Biomed. 2021 Nov;211:106453. doi: 10.1016/j.cmpb.2021.106453. Epub 2021 Oct 5.

Abstract

BACKGROUND AND OBJECTIVE

Color variations in digital histopathology severely impact the performance of computer-aided diagnosis systems. They are due to differences in the staining process and acquisition system, among other reasons. Blind color deconvolution techniques separate multi-stained images into single stained bands which, once normalized, can be used to eliminate these negative color variations and improve the performance of machine learning tasks.

METHODS

In this work, we decompose the observed RGB image in its hematoxylin and eosin components. We apply Bayesian modeling and inference based on the use of Super Gaussian sparse priors for each stain together with prior closeness to a given reference color-vector matrix. The hematoxylin and eosin components are then used for image normalization and classification of histological images. The proposed framework is tested on stain separation, image normalization, and cancer classification problems. The results are measured using the peak signal to noise ratio, normalized median intensity and the area under ROC curve on five different databases.

RESULTS

The obtained results show the superiority of our approach to current state-of-the-art blind color deconvolution techniques. In particular, the fidelity to the tissue improves 1,27 dB in mean PSNR. The normalized median intensity shows a good normalization quality of the proposed approach on the tested datasets. Finally, in cancer classification experiments the area under the ROC curve improves from 0.9491 to 0.9656 and from 0.9279 to 0.9541 on Camelyon-16 and Camelyon-17, respectively, when the original and processed images are used. Furthermore, these figures of merits are better than those obtained by the methods compared with.

CONCLUSIONS

The proposed framework for blind color deconvolution, normalization and classification of images guarantees fidelity to the tissue structure and can be used both for normalization and classification. In addition, color deconvolution enables the use of the optical density space for classification, which improves the classification performance.

摘要

背景与目的

数字组织病理学中的颜色变化严重影响计算机辅助诊断系统的性能。这些变化是由于染色过程和采集系统等原因造成的。盲色解卷积技术可将多染色图像分离为单染色带,这些带一旦归一化,就可用于消除这些负面颜色变化并提高机器学习任务的性能。

方法

在这项工作中,我们将观察到的 RGB 图像分解为苏木精和伊红成分。我们应用贝叶斯建模和推理,基于对每种染色剂使用超高斯稀疏先验,并结合与给定参考颜色向量矩阵的接近度。然后将苏木精和伊红成分用于图像归一化和组织学图像分类。所提出的框架在染色分离、图像归一化和癌症分类问题上进行了测试。使用五个不同数据库上的峰值信噪比、归一化中位数强度和 ROC 曲线下面积来衡量结果。

结果

获得的结果表明,我们的方法优于当前最先进的盲色解卷积技术。特别是,平均 PSNR 提高了 1.27 dB 的保真度。归一化中位数强度表明,在所测试的数据集上,该方法具有良好的归一化质量。最后,在癌症分类实验中,当使用原始和处理后的图像时,ROC 曲线下面积在 Camelyon-16 和 Camelyon-17 上分别从 0.9491 提高到 0.9656 和从 0.9279 提高到 0.9541。此外,这些优良指标优于与所比较方法获得的指标。

结论

所提出的盲色解卷积、图像归一化和分类框架可保证对组织结构的保真度,可同时用于归一化和分类。此外,颜色解卷积可实现使用光密度空间进行分类,从而提高分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验