Suppr超能文献

基于深度学习的多数投票算法的多类别脑肿瘤分级分类及其可解释人工智能验证

Multi-Class Brain Tumor Grades Classification Using a Deep Learning-Based Majority Voting Algorithm and Its Validation Using Explainable-AI.

作者信息

Tandel Gopal Singh, Tiwari Ashish, Kakde Omprakash G

机构信息

Department of Computer Science, Allahabad Degree College, University of Allahabad, Prayagraj, India.

Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur, India.

出版信息

J Imaging Inform Med. 2025 Jan 8. doi: 10.1007/s10278-024-01368-4.

Abstract

Biopsy is considered the gold standard for diagnosing brain tumors, but its invasive nature can pose risks to patients. Additionally, tissue analysis can be cumbersome and inconsistent among observers. This research aims to develop a cost-effective, non-invasive, MRI-based computer-aided diagnosis tool that can reliably, accurately and swiftly identify brain tumor grades. Our system employs ensemble deep learning (EDL) within an MRI multiclass framework that includes five datasets: two-class (C2), three-class (C3), four-class (C4), five-class (C5) and six-class (C6). The EDL utilizes a majority voting algorithm to classify brain tumors by combining seven renowned deep learning (DL) models-EfficientNet, VGG16, ResNet18, GoogleNet, ResNet50, Inception-V3 and DarkNet-and seven machine learning (ML) models, including support vector machine, K-nearest neighbour, Naïve Bayes, decision tree, linear discriminant analysis, artificial neural network and random forest. Additionally, local interpretable model-agnostic explanations (LIME) are employed as an explainable AI algorithm, providing a visual representation of the CNN's internal workings to enhance the credibility of the results. Through extensive five-fold cross-validation experiments, the DL-based majority voting algorithm outperformed the ML-based majority voting algorithm, achieving the highest average accuracies of 100 ± 0.00%, 98.55 ± 0.35%, 98.47 ± 0.63%, 95.34 ± 1.17% and 96.61 ± 0.85% for the C2, C3, C4, C5 and C6 datasets, respectively. Majority voting algorithms typically yield consistent results across different folds of the brain tumor data and enhance performance compared to any individual deep learning and machine learning models.

摘要

活检被认为是诊断脑肿瘤的金标准,但其侵入性可能给患者带来风险。此外,组织分析可能繁琐且观察者之间存在差异。本研究旨在开发一种经济高效、非侵入性的基于磁共振成像(MRI)的计算机辅助诊断工具,该工具能够可靠、准确且迅速地识别脑肿瘤分级。我们的系统在一个MRI多分类框架内采用集成深度学习(EDL),该框架包括五个数据集:二类(C2)、三类(C3)、四类(C4)、五类(C5)和六类(C6)。EDL利用多数投票算法,通过结合七个著名的深度学习(DL)模型——EfficientNet、VGG16、ResNet18、GoogleNet、ResNet50、Inception-V3和DarkNet——以及七个机器学习(ML)模型,包括支持向量机、K近邻、朴素贝叶斯、决策树、线性判别分析、人工神经网络和随机森林,来对脑肿瘤进行分类。此外,局部可解释模型无关解释(LIME)被用作一种可解释的人工智能算法,提供卷积神经网络内部工作的可视化表示,以提高结果的可信度。通过广泛的五折交叉验证实验,基于深度学习的多数投票算法优于基于机器学习的多数投票算法,对于C2、C3、C4、C5和C6数据集分别达到了最高平均准确率100±0.00%、98.55±0.35%、98.47±0.63%、95.34±1.17%和96.61±0.85%。多数投票算法通常在脑肿瘤数据的不同折上产生一致的结果,并且与任何单个深度学习和机器学习模型相比,性能有所提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验