Yasin Sana, Adeel Muhammad, Draz Umar, Ali Tariq, Hijji Mohammad, Ayaz Muhammad, Marei Ashraf M
Department of Computer Science, University of Okara, Okara 56300, Pakistan.
Department of Computer Science, University of Sahiwal, Sahiwal 57000, Pakistan.
Bioengineering (Basel). 2025 Jun 12;12(6):641. doi: 10.3390/bioengineering12060641.
Proactively detecting schizophrenia relapse remains a critical challenge in psychiatric care, where traditional predictive models often fail to capture the complex neurophysiological and behavioral dynamics preceding recurrence. Existing methods typically rely on shallow architectures or unimodal data sources, resulting in limited sensitivity-particularly in the early stages of relapse. In this study, we propose a CNN-Transformer fusion model that leverages the complementary strengths of Convolutional Neural Networks (CNNs) and Transformer-based architectures to process electroencephalogram (EEG) signals enriched with clinical and sentiment-derived features. This hybrid framework enables joint spatial-temporal modeling of relapse indicators, allowing for a more nuanced and patient-specific analysis. Unlike previous approaches, our model incorporates a multi-resource data fusion pipeline, improving robustness, interpretability, and clinical relevance. Experimental evaluations demonstrate a superior prediction accuracy of 97%, with notable improvements in recall and F1-score compared to leading baselines. Moreover, the model significantly reduces false negatives, a crucial factor for timely therapeutic intervention. By addressing the limitations of unimodal and superficial prediction strategies, this framework lays the groundwork for scalable, real-world applications in continuous mental health monitoring and personalized relapse prevention.
在精神科护理中,主动检测精神分裂症复发仍然是一项关键挑战,传统的预测模型往往无法捕捉复发前复杂的神经生理和行为动态。现有方法通常依赖于浅层架构或单模态数据源,导致敏感性有限,尤其是在复发的早期阶段。在本研究中,我们提出了一种CNN-Transformer融合模型,该模型利用卷积神经网络(CNN)和基于Transformer的架构的互补优势来处理富含临床和情感衍生特征的脑电图(EEG)信号。这种混合框架能够对复发指标进行联合时空建模,从而实现更细致入微且针对患者个体的分析。与先前的方法不同,我们的模型纳入了多资源数据融合管道,提高了稳健性、可解释性和临床相关性。实验评估显示预测准确率高达97%,与领先的基线相比,召回率和F1分数有显著提高。此外,该模型显著减少了假阴性,这是及时进行治疗干预的关键因素。通过解决单模态和表面预测策略的局限性,该框架为持续心理健康监测和个性化复发预防中的可扩展实际应用奠定了基础。