Suppr超能文献

通过移动应用程序呈现的多模态情感识别测试的开发。

The Development of a Multi-Modality Emotion Recognition Test Presented via a Mobile Application.

作者信息

Yu Rwei-Ling, Poon Shu-Fai, Yi Hsin-Jou, Chien Chia-Yi, Hsu Pei-Hsuan

机构信息

Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.

出版信息

Brain Sci. 2022 Feb 11;12(2):251. doi: 10.3390/brainsci12020251.

Abstract

Emotion recognition ability is the basis of interpersonal communication and detection of brain alterations. Existing tools for assessing emotion recognition ability are mostly single modality, paper-and-pencil test format, and using only Western stimuli. However, various modalities and cultural factors greatly influence emotion recognition ability. We aimed to develop a multi-modality emotion recognition mobile application (MMER app). A total of 169 healthy adults were recruited as participants. The MMER app's materials were extracted from a published database, and tablets were used as the interface. The Rasch, factor analysis, and related psychometric analyses were performed. The Cronbach alpha was 0.94, and the test-retest reliability was 0.85. Factor analyses identified three factors. In addition, an adjusted score formula was provided for clinical use. The MMER app has good psychometric properties, and its further possible applications and investigations are discussed.

摘要

情绪识别能力是人际沟通和脑部变化检测的基础。现有的评估情绪识别能力的工具大多为单一模式、纸笔测试形式,且仅使用西方刺激材料。然而,多种模式和文化因素会极大地影响情绪识别能力。我们旨在开发一款多模式情绪识别移动应用程序(MMER应用程序)。共招募了169名健康成年人作为参与者。MMER应用程序的材料从一个已发表的数据库中提取,并使用平板电脑作为界面。进行了拉施分析、因素分析及相关心理测量分析。克朗巴赫α系数为0.94,重测信度为0.85。因素分析确定了三个因素。此外,还提供了一个调整后的分数公式以供临床使用。MMER应用程序具有良好的心理测量特性,并对其进一步可能的应用和研究进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b864/8870587/135ea29065f1/brainsci-12-00251-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验