Revailler Wendy, Cottereau Anne Ségolène, Rossi Cedric, Noyelle Rudy, Trouillard Thomas, Morschhauser Franck, Casasnovas Olivier, Thieblemont Catherine, Gouill Steven Le, André Marc, Ghesquieres Herve, Ricci Romain, Meignan Michel, Kanoun Salim
Centre de Recherche Clinique de Toulouse, Team 9, 31100 Toulouse, France.
Institut Universitaire du Cancer de Toulouse, Institut Claudius Regaud, Nuclear Medicine, 1 Avenue Joliot Curie, 31000 Toulouse, France.
Diagnostics (Basel). 2022 Feb 6;12(2):417. doi: 10.3390/diagnostics12020417.
The total metabolic tumor volume (TMTV) is a new prognostic factor in lymphomas that could benefit from automation with deep learning convolutional neural networks (CNN). Manual TMTV segmentations of 1218 baseline 18FDG-PET/CT have been used for training. A 3D V-NET model has been trained to generate segmentations with soft dice loss. Ground truth segmentation has been generated using a combination of different thresholds (TMTVprob), applied to the manual region of interest (Otsu, relative 41% and SUV 2.5 and 4 cutoffs). In total, 407 and 405 PET/CT were used for test and validation datasets, respectively. The training was completed in 93 h. In comparison with the TMTVprob, mean dice reached 0.84 in the training set, 0.84 in the validation set and 0.76 in the test set. The median dice scores for each TMTV methodology were 0.77, 0.70 and 0.90 for 41%, 2.5 and 4 cutoff, respectively. Differences in the median TMTV between manual and predicted TMTV were 32, 147 and 5 mL. Spearman's correlations between manual and predicted TMTV were 0.92, 0.95 and 0.98. This generic deep learning model to compute TMTV in lymphomas can drastically reduce computation time of TMTV.
总代谢肿瘤体积(TMTV)是淋巴瘤的一种新的预后因素,可通过深度学习卷积神经网络(CNN)实现自动化而受益。1218例基线18FDG-PET/CT的手动TMTV分割已用于训练。已训练一个3D V-NET模型以生成具有软骰子损失的分割。通过将不同阈值(TMTVprob)组合应用于手动感兴趣区域(大津法、相对41%以及SUV 2.5和4的截断值)生成了真实分割。总共407例和405例PET/CT分别用于测试数据集和验证数据集。训练在93小时内完成。与TMTVprob相比,训练集的平均骰子系数达到0.84,验证集为0.84,测试集为0.76。每种TMTV方法的中位数骰子系数对于41%、2.5和4的截断值分别为0.77、0.70和0.90。手动TMTV与预测TMTV之间的中位数TMTV差异分别为32、147和5 mL。手动TMTV与预测TMTV之间的斯皮尔曼相关性分别为0.92、0.95和0.98。这种用于计算淋巴瘤TMTV的通用深度学习模型可大幅减少TMTV的计算时间。