Suppr超能文献

用于全基因组调控动力学的生物信息神经常微分方程

Biologically informed NeuralODEs for genome-wide regulatory dynamics.

作者信息

Hossain Intekhab, Fanfani Viola, Quackenbush John, Burkholz Rebekka

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany.

出版信息

Res Sq. 2023 Mar 14:rs.3.rs-2675584. doi: 10.21203/rs.3.rs-2675584/v1.

Abstract

Models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such ODEs is challenging, since we want to predict the evolution of gene expression in a way that accurately encodes the causal gene-regulatory network (GRN) governing the dynamics and the nonlinear functional relationships between genes. Most widely used ODE estimation methods either impose too many parametric restrictions or are not guided by meaningful biological insights, both of which impedes scalability and/or explainability. To overcome these limitations, we developed PHOENIX, a modeling framework based on neural ordinary differential equations (NeuralODEs) and Hill-Langmuir kinetics, that can flexibly incorporate prior domain knowledge and biological constraints to promote sparse, biologically interpretable representations of ODEs. We test accuracy of PHOENIX in a series of experiments benchmarking it against several currently used tools for ODE estimation. We also demonstrate PHOENIX's flexibility by studying oscillating expression data from synchronized yeast cells and assess its scalability by modelling genome-scale breast cancer expression for samples ordered in pseudotime. Finally, we show how the combination of user-defined prior knowledge and functional forms from systems biology allows PHOENIX to encode key properties of the underlying GRN, and subsequently predict expression patterns in a biologically explainable way.

摘要

被表述为常微分方程(ODEs)的模型能够准确解释基因表达的时间模式,并有望为重要的细胞过程、疾病进展和干预设计带来新的见解。学习此类常微分方程具有挑战性,因为我们希望以一种准确编码控制基因动态的因果基因调控网络(GRN)以及基因之间非线性功能关系的方式来预测基因表达的演变。大多数广泛使用的常微分方程估计方法要么施加了过多的参数限制,要么没有受到有意义的生物学见解的指导,这两者都阻碍了可扩展性和/或可解释性。为了克服这些限制,我们开发了PHOENIX,这是一个基于神经常微分方程(NeuralODEs)和希尔 - 朗缪尔动力学的建模框架,它可以灵活地纳入先验领域知识和生物学约束,以促进常微分方程的稀疏、生物学上可解释的表示。我们在一系列实验中测试了PHOENIX的准确性,并将其与目前几种用于常微分方程估计的工具进行了基准比较。我们还通过研究来自同步酵母细胞的振荡表达数据展示了PHOENIX的灵活性,并通过对按伪时间排序的样本的基因组规模乳腺癌表达进行建模来评估其可扩展性。最后,我们展示了用户定义的先验知识和系统生物学中的功能形式的结合如何使PHOENIX能够编码潜在基因调控网络的关键属性,并随后以生物学上可解释的方式预测表达模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验