Shiao Yih-Horng
US Patent Trademark Office, Department of Commerce, Alexandria, VA 22314, USA.
Life (Basel). 2022 Jan 28;12(2):203. doi: 10.3390/life12020203.
The heterogeneity of ribosomes, characterized by structural variations, arises from differences in types, numbers, and/or post-translational modifications of participating ribosomal proteins (RPs), ribosomal RNAs (rRNAs) sequence variants plus post-transcriptional modifications, and additional molecules essential for forming a translational machinery. The ribosomal heterogeneity within an individual organism or a single cell leads to preferential translations of selected messenger RNA (mRNA) transcripts over others, especially in response to environmental cues. The role of ribosomal heterogeneity in SARS-CoV-2 coronavirus infection, propagation, related symptoms, or vaccine responses is not known, and a technique to examine these has not yet been developed. Tools to detect ribosomal heterogeneity or to profile translating mRNAs independently cannot identify unique or specialized ribosome(s) along with corresponding mRNA substrate(s). Concurrent characterizations of RPs and/or rRNAs with mRNA substrate from a single ribosome would be critical to decipher the putative role of ribosomal heterogeneity in the COVID-19 disease, caused by the SARS-CoV-2, which hijacks the host ribosome to preferentially translate its RNA genome. Such a protocol should be able to provide a high-throughput screening of clinical samples in a large population that would reach a statistical power for determining the impact of a specialized ribosome to specific characteristics of the disease. These characteristics may include host susceptibility, viral infectivity and transmissibility, severity of symptoms, antiviral treatment responses, and vaccine immunogenicity including its side effect and efficacy. In this study, several state-of-the-art techniques, in particular, chemical probing of ribosomal components or rRNA structures, proximity ligation to generate rRNA-mRNA chimeras for sequencing, nanopore gating of individual ribosomes, nanopore RNA sequencing and/or structural analyses, single-ribosome mass spectrometry, and microfluidic droplets for separating ribosomes or indexing rRNAs/mRNAs, are discussed. The key elements for further improvement and proper integration of the above techniques to potentially arrive at a high-throughput protocol for examining individual ribosomes and their mRNA substrates in a clinical setting are also presented.
核糖体的异质性以结构变异为特征,源于参与的核糖体蛋白(RP)的类型、数量和/或翻译后修饰的差异、核糖体RNA(rRNA)序列变体以及转录后修饰,以及形成翻译机制所必需的其他分子。个体生物体或单个细胞内的核糖体异质性导致某些信使RNA(mRNA)转录本比其他转录本优先翻译,尤其是在对环境线索作出反应时。核糖体异质性在严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染、传播、相关症状或疫苗反应中的作用尚不清楚,且尚未开发出检测这些作用的技术。独立检测核糖体异质性或分析正在翻译的mRNA的工具无法识别独特或特殊的核糖体及其相应的mRNA底物。将核糖体蛋白和/或rRNA与单个核糖体的mRNA底物同时进行表征,对于解读核糖体异质性在由SARS-CoV-2引起的2019冠状病毒病(COVID-19)中的假定作用至关重要,SARS-CoV-2会劫持宿主核糖体以优先翻译其RNA基因组。这样的方案应该能够对大量人群的临床样本进行高通量筛选,从而获得确定特殊核糖体对疾病特定特征影响的统计效力。这些特征可能包括宿主易感性、病毒传染性和传播性、症状严重程度、抗病毒治疗反应以及疫苗免疫原性,包括其副作用和效力。在本研究中,讨论了几种最先进的技术,特别是核糖体成分或rRNA结构的化学探测、用于测序的邻近连接以生成rRNA-mRNA嵌合体、单个核糖体的纳米孔门控、纳米孔RNA测序和/或结构分析、单核糖体质谱分析以及用于分离核糖体或对rRNA/mRNA进行索引的微流控液滴。还介绍了进一步改进和适当整合上述技术以潜在达成用于在临床环境中检测单个核糖体及其mRNA底物的高通量方案的关键要素。