文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects.

作者信息

Bucharskaya Alla B, Khlebtsov Nikolai G, Khlebtsov Boris N, Maslyakova Galina N, Navolokin Nikita A, Genin Vadim D, Genina Elina A, Tuchin Valery V

机构信息

Core Facility Center, Saratov State Medical University, 112 Bol'shaya Kazachya Str., 410012 Saratov, Russia.

Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia.

出版信息

Materials (Basel). 2022 Feb 21;15(4):1606. doi: 10.3390/ma15041606.


DOI:10.3390/ma15041606
PMID:35208145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8878601/
Abstract

Cancer remains one of the leading causes of death in the world. For a number of neoplasms, the efficiency of conventional chemo- and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment. However, despite attractive promises, the current PPT status is limited by laboratory experiments, academic papers, and only a few preclinical studies. Unfortunately, most nanoformulations still share a similar fate: great laboratory promises and fair preclinical trials. This review discusses the current challenges and prospects of plasmonic nanomedicine based on PPT and photodynamic therapy (PDT). We start with consideration of the fundamental principles underlying plasmonic properties of AuNPs to tune their plasmon resonance for the desired NIR-I, NIR-2, and SWIR optical windows. The basic principles for simulation of optical cross-sections and plasmonic heating under CW and pulsed irradiation are discussed. Then, we consider the state-of-the-art methods for wet chemical synthesis of the most popular PPPT AuNPs such as silica/gold nanoshells, Au nanostars, nanorods, and nanocages. The photothermal efficiencies of these nanoparticles are compared, and their applications to current nanomedicine are shortly discussed. In a separate section, we discuss the fabrication of gold and other nanoparticles by the pulsed laser ablation in liquid method. The second part of the review is devoted to our recent experimental results on laser-activated interaction of AuNPs with tumor and healthy tissues and current achievements of other research groups in this application area. The unresolved issues of PPT are the significant accumulation of AuNPs in the organs of the mononuclear phagocyte system, causing potential toxic effects of nanoparticles, and the possibility of tumor recurrence due to the presence of survived tumor cells. The prospective ways of solving these problems are discussed, including developing combined antitumor therapy based on combined PPT and PDT. In the conclusion section, we summarize the most urgent needs of current PPT-based nanomedicine.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/d3fc0b88e6d3/materials-15-01606-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/7d47179e17d4/materials-15-01606-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/8496319ade7b/materials-15-01606-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/3596adbb1083/materials-15-01606-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/bd0fc5067399/materials-15-01606-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/d9b51dee7b39/materials-15-01606-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/8ffbc2c9adaa/materials-15-01606-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/43c5aeb805cf/materials-15-01606-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/f38f204b64e0/materials-15-01606-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/77149ab676b8/materials-15-01606-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/92a8c229feaa/materials-15-01606-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/0d1a8c59ef71/materials-15-01606-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/1c530b6a6369/materials-15-01606-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/f97df10ec0ca/materials-15-01606-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/59ad0a072264/materials-15-01606-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/1a78bae35d76/materials-15-01606-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/d3fc0b88e6d3/materials-15-01606-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/7d47179e17d4/materials-15-01606-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/8496319ade7b/materials-15-01606-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/3596adbb1083/materials-15-01606-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/bd0fc5067399/materials-15-01606-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/d9b51dee7b39/materials-15-01606-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/8ffbc2c9adaa/materials-15-01606-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/43c5aeb805cf/materials-15-01606-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/f38f204b64e0/materials-15-01606-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/77149ab676b8/materials-15-01606-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/92a8c229feaa/materials-15-01606-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/0d1a8c59ef71/materials-15-01606-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/1c530b6a6369/materials-15-01606-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/f97df10ec0ca/materials-15-01606-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/59ad0a072264/materials-15-01606-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/1a78bae35d76/materials-15-01606-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac84/8878601/d3fc0b88e6d3/materials-15-01606-g015.jpg

相似文献

[1]
Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects.

Materials (Basel). 2022-2-21

[2]
Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles.

Int J Mol Sci. 2016-8-9

[3]
Exploiting gold nanoparticles for diagnosis and cancer treatments.

Nanotechnology. 2021-5-7

[4]
Galvanic replacement synthesis of multi-branched gold nanocrystals for photothermal cancer therapy.

J Mater Chem B. 2020-7-1

[5]
Nanoscaled PAMAM Dendrimer Spacer Improved the Photothermal-Photodynamic Treatment Efficiency of Photosensitizer-Decorated Confeito-Like Gold Nanoparticles for Cancer Therapy.

Macromol Biosci. 2022-8

[6]
Plasmonic photothermal therapy: Approaches to advanced strategy.

Lasers Surg Med. 2018-12

[7]
Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations.

J Mater Chem B. 2020-4-8

[8]
Plasmonic nanopowders for photothermal therapy of tumors.

Langmuir. 2012-3-20

[9]
Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for photothermal tumor ablation in the second near-infrared biowindow.

Theranostics. 2020

[10]
A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles.

J Am Chem Soc. 2016-1-25

引用本文的文献

[1]
Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes.

Pharmaceuticals (Basel). 2025-6-27

[2]
Photothermal Hyperthermia Suppresses Liver Tumor Growth Via Hippo Signaling Pathway-Dependent Inhibition of Cell Proliferation and Induction of Apoptosis.

Biol Proced Online. 2025-6-17

[3]
Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI.

Metabolites. 2025-3-13

[4]
Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy.

Nanomaterials (Basel). 2025-1-15

[5]
Femtosecond Laser-Induced Photothermal Effects of Ultrasmall Plasmonic Gold Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells.

Cells. 2024-12-23

[6]
Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review.

Pharmaceutics. 2024-9-28

[7]
Bibliometric and visual analysis in the field of two-dimensions nano black phosphorus in cancer from 2015 to 2023.

Discov Oncol. 2024-7-3

[8]
Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment-The Current State of Knowledge.

Cancers (Basel). 2024-3-14

[9]
Surface engineered nanohybrids in plasmonic photothermal therapy for cancer: Regulatory and translational challenges.

Nanotheranostics. 2024

[10]
Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy.

Chem Soc Rev. 2024-3-18

本文引用的文献

[1]
Shining Gold Nanostars: From Cancer Diagnostics to Photothermal Treatment and Immunotherapy.

J Immunol Sci. 2018

[2]
Plasmonic gold nanostars for synergistic photoimmunotherapy to treat cancer.

Nanophotonics. 2021-8-27

[3]
Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles.

Nanoscale Adv. 2021-4-21

[4]
Tumor microenvironment-responsive AgS-PAsp(DOX)-cRGD nanoparticles-mediated photochemotherapy enhances the immune response to tumor therapy.

Biomaterials. 2022-2

[5]
Improving SERS bioimaging of subcutaneous phantom in vivo with optical clearing.

J Biophotonics. 2022-3

[6]
Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery.

Adv Drug Deliv Rev. 2022-1

[7]
Reactive oxygen species / photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism.

J Colloid Interface Sci. 2022-1-15

[8]
Air-Filled Microbubbles Based on Albumin Functionalized with Gold Nanocages and Zinc Phthalocyanine for Multimodal Imaging.

Micromachines (Basel). 2021-9-27

[9]
DARPin_9-29-Targeted Gold Nanorods Selectively Suppress HER2-Positive Tumor Growth in Mice.

Cancers (Basel). 2021-10-19

[10]
Evaluation of Multifunctional Gold Nanorods for Boron Neutron Capture and Photothermal Therapies.

ACS Appl Mater Interfaces. 2021-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索