Suppr超能文献

环境与基因组相互作用的最后前沿?用于预测非传染性疾病风险的综合多组学方法。

A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk.

作者信息

Noble Alexandra J, Purcell Rachel V, Adams Alex T, Lam Ying K, Ring Paulina M, Anderson Jessica R, Osborne Amy J

机构信息

Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.

Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand.

出版信息

Front Genet. 2022 Feb 8;13:831866. doi: 10.3389/fgene.2022.831866. eCollection 2022.

Abstract

Epidemiological and associative research from humans and animals identifies correlations between the environment and health impacts. The environment-health inter-relationship is effected through an individual's underlying genetic variation and mediated by mechanisms that include the changes to gene regulation that are associated with the diversity of phenotypes we exhibit. However, the causal relationships have yet to be established, in part because the associations are reduced to individual interactions and the combinatorial effects are rarely studied. This problem is exacerbated by the fact that our genomes are highly dynamic; they integrate information across multiple levels (from linear sequence, to structural organisation, to temporal variation) each of which is open to and responds to environmental influence. To unravel the complexities of the genomic basis of human disease, and in particular non-communicable diseases that are also influenced by the environment (e.g., obesity, type II diabetes, cancer, multiple sclerosis, some neurodegenerative diseases, inflammatory bowel disease, rheumatoid arthritis) it is imperative that we fully integrate multiple layers of genomic data. Here we review current progress in integrated genomic data analysis, and discuss cases where data integration would lead to significant advances in our ability to predict how the environment may impact on our health. We also outline limitations which should form the basis of future research questions. In so doing, this review will lay the foundations for future research into the impact of the environment on our health.

摘要

来自人类和动物的流行病学及关联性研究确定了环境与健康影响之间的相关性。环境与健康的相互关系是通过个体潜在的基因变异实现的,并由多种机制介导,这些机制包括与我们所表现出的表型多样性相关的基因调控变化。然而,因果关系尚未确立,部分原因是这些关联被简化为个体间的相互作用,而组合效应很少被研究。我们的基因组具有高度动态性这一事实加剧了这一问题;它们整合了多个层面的信息(从线性序列到结构组织,再到时间变化),每个层面都容易受到环境影响并对其做出反应。为了揭示人类疾病,尤其是那些也受环境影响的非传染性疾病(如肥胖症、II型糖尿病、癌症、多发性硬化症、一些神经退行性疾病、炎症性肠病、类风湿性关节炎)基因组基础的复杂性,我们必须全面整合多层基因组数据。在此,我们回顾整合基因组数据分析的当前进展,并讨论数据整合能够显著提升我们预测环境如何影响健康能力的案例。我们还概述了一些局限性,这些局限性应成为未来研究问题的基础。通过这样做,本综述将为未来关于环境对我们健康影响的研究奠定基础。

相似文献

3
4
5
6
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
An overview of technologies for MS-based proteomics-centric multi-omics.基于 MS 的蛋白质组学中心型多组学技术概述。
Expert Rev Proteomics. 2022 Mar;19(3):165-181. doi: 10.1080/14789450.2022.2070476. Epub 2022 May 2.
9

本文引用的文献

6
The 3D Genome Structure of Single Cells.单细胞的三维基因组结构。
Annu Rev Biomed Data Sci. 2021 Jul 20;4:21-41. doi: 10.1146/annurev-biodatasci-020121-084709. Epub 2021 Apr 23.
10
Machine learning for perturbational single-cell omics.用于扰动单细胞组学的机器学习
Cell Syst. 2021 Jun 16;12(6):522-537. doi: 10.1016/j.cels.2021.05.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验