Alemu Robel, Sharew Nigussie T, Arsano Yodit Y, Ahmed Muktar, Tekola-Ayele Fasil, Mersha Tesfaye B, Amare Azmeraw T
Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Anderson School of Management, University of California Los Angeles, Los Angeles, CA, USA.
Hum Genomics. 2025 Jan 31;19(1):8. doi: 10.1186/s40246-025-00718-9.
Non-communicable diseases (NCDs) such as cardiovascular diseases, chronic respiratory diseases, cancers, diabetes, and mental health disorders pose a significant global health challenge, accounting for the majority of fatalities and disability-adjusted life years worldwide. These diseases arise from the complex interactions between genetic, behavioral, and environmental factors, necessitating a thorough understanding of these dynamics to identify effective diagnostic strategies and interventions. Although recent advances in multi-omics technologies have greatly enhanced our ability to explore these interactions, several challenges remain. These challenges include the inherent complexity and heterogeneity of multi-omic datasets, limitations in analytical approaches, and severe underrepresentation of non-European genetic ancestries in most omics datasets, which restricts the generalizability of findings and exacerbates health disparities. This scoping review evaluates the global landscape of multi-omics data related to NCDs from 2000 to 2024, focusing on recent advancements in multi-omics data integration, translational applications, and equity considerations. We highlight the need for standardized protocols, harmonized data-sharing policies, and advanced approaches such as artificial intelligence/machine learning to integrate multi-omics data and study gene-environment interactions. We also explore challenges and opportunities in translating insights from gene-environment (GxE) research into precision medicine strategies. We underscore the potential of global multi-omics research in advancing our understanding of NCDs and enhancing patient outcomes across diverse and underserved populations, emphasizing the need for equity and fairness-centered research and strategic investments to build local capacities in underrepresented populations and regions.
心血管疾病、慢性呼吸道疾病、癌症、糖尿病和精神健康障碍等非传染性疾病对全球健康构成了重大挑战,在全球死亡人数和伤残调整生命年中占大多数。这些疾病源于遗传、行为和环境因素之间的复杂相互作用,因此需要深入了解这些动态变化,以确定有效的诊断策略和干预措施。尽管多组学技术的最新进展极大地增强了我们探索这些相互作用的能力,但仍存在一些挑战。这些挑战包括多组学数据集固有的复杂性和异质性、分析方法的局限性,以及在大多数组学数据集中非欧洲遗传血统的严重代表性不足,这限制了研究结果的普遍性,并加剧了健康差距。本综述评估了2000年至2024年与非传染性疾病相关的多组学数据的全球格局,重点关注多组学数据整合、转化应用和公平性考量方面的最新进展。我们强调需要标准化方案、统一的数据共享政策以及人工智能/机器学习等先进方法来整合多组学数据并研究基因-环境相互作用。我们还探讨了将基因-环境(GxE)研究的见解转化为精准医学策略中的挑战和机遇。我们强调全球多组学研究在增进我们对非传染性疾病的理解以及改善不同和服务不足人群的患者结局方面的潜力,强调需要以公平为中心的研究和战略投资,以建设代表性不足人群和地区的本地能力。