Suppr超能文献

与人类面部表情识别中的大脑激活相关的基因表达。

Gene expression associated with human brain activations in facial expression recognition.

机构信息

Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.

出版信息

Brain Imaging Behav. 2022 Aug;16(4):1657-1670. doi: 10.1007/s11682-022-00633-w. Epub 2022 Feb 25.

Abstract

Previous studies identified some genetic loci of emotion, but few focused on human emotion-related gene expression. In this study, the facial expression recognition (FER) task-based high-resolution fMRI data of 203 subjects in the Human Connectome Project (HCP) and expression data of the six healthy human postmortem brain tissues in the Allen Human Brain Atlas (AHBA) were used to conduct a transcriptome-neuroimaging spatial association analysis. Finally, 371 genes were identified to be significantly associated with FER-related brain activations. Enrichment analyses revealed that FER-related genes were mainly expressed in the brain, especially neurons, and might be related to cell junction organization, synaptic functions, and nervous system development regulation, indicating that FER was a complex polygenetic biological process involving multiple pathways. Moreover, these genes exhibited higher enrichment for psychiatric diseases with heavy emotion impairments. This study provided new insight into understanding the FER-related biological mechanisms and might be helpful to explore treatment methods for emotion-related psychiatric disorders.

摘要

先前的研究确定了一些与情绪相关的遗传位点,但很少有研究关注人类情绪相关基因的表达。在这项研究中,我们使用了人类连接组计划(HCP)中 203 名受试者的基于面部表情识别(FER)任务的高分辨率 fMRI 数据和艾伦人类大脑图谱(AHBA)中 6 个健康人类死后脑组织的表达数据,进行了转录组-神经影像学空间关联分析。最后,确定了 371 个与 FER 相关的脑激活显著相关的基因。富集分析表明,FER 相关基因主要在大脑中表达,特别是在神经元中,可能与细胞连接组织、突触功能和神经系统发育调节有关,这表明 FER 是一个涉及多个途径的复杂多基因生物学过程。此外,这些基因在与情绪障碍相关的精神疾病中表现出更高的富集。这项研究为理解 FER 相关的生物学机制提供了新的视角,并可能有助于探索情绪相关精神障碍的治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验