Suppr超能文献

技能习得的神经相关:序列拦截序列学习任务中皮质活动减少。

Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

机构信息

Interdepartmental Neuroscience Program, Northwestern University, 320 E Superior St, Searle 5-474, Chicago, IL 60611, USA.

出版信息

Neuroimage. 2011 Oct 15;58(4):1150-7. doi: 10.1016/j.neuroimage.2011.06.090. Epub 2011 Jul 12.

Abstract

Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time.

摘要

学习复杂的运动技能需要学习组成动作以及它们的顺序和时间安排的顺序结构。使用序列拦截序列学习 (SISL) 任务,参与者通过重复序列的训练来学习精确定时拦截反应的序列。在初步隐含学习重复序列之后,在执行该已知序列期间收集功能磁共振成像数据,并将其与在新动作序列、新定时模式或两者的活动进行比较。在包括枕叶外侧、顶叶和运动前皮质区域的分布式双侧网络中,在练习序列期间观察到活动减少。这种诱发活动的减少可能反映了针对训练序列的视觉空间处理、空间运动整合、运动规划和运动执行的效率提高,这可能得到非陈述性技能学习的支持。此外,练习序列在左侧腹侧纹状体和内侧前额叶皮层中引起更多的活动,而在后扣带回中在表现更好的时期更为活跃。许多先前的感知运动技能学习研究发现,额皮质(例如,运动和运动前皮质、SMA)和纹状体区域(例如,壳核)中的运动区域的活动增加。这里观察到的活动变化(即皮质网络中的活动减少)可能反映了主要通过更准确的表现而不是减少反应时间来表达的技能学习。

相似文献

1
Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.
Neuroimage. 2011 Oct 15;58(4):1150-7. doi: 10.1016/j.neuroimage.2011.06.090. Epub 2011 Jul 12.
2
fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
Neuroimage. 2006 Aug 15;32(2):714-27. doi: 10.1016/j.neuroimage.2006.04.205. Epub 2006 Jun 22.
3
Neuroanatomical correlates of motor acquisition and motor transfer.
J Neurophysiol. 2008 Apr;99(4):1836-45. doi: 10.1152/jn.01187.2007. Epub 2008 Feb 13.
4
Differential impact of reward and punishment on functional connectivity after skill learning.
Neuroimage. 2019 Apr 1;189:95-105. doi: 10.1016/j.neuroimage.2019.01.009. Epub 2019 Jan 8.
5
Brain-behavior correlates of optimizing learning through interleaved practice.
Neuroimage. 2011 Jun 1;56(3):1758-72. doi: 10.1016/j.neuroimage.2011.02.066. Epub 2011 Mar 2.
6
The time course of changes during motor sequence learning: a whole-brain fMRI study.
Neuroimage. 1998 Jul;8(1):50-61. doi: 10.1006/nimg.1998.0349.
7
Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
Brain Res. 2006 Apr 7;1081(1):179-90. doi: 10.1016/j.brainres.2006.01.103. Epub 2006 Mar 13.
8
Model-free characterization of brain functional networks for motor sequence learning using fMRI.
Neuroimage. 2008 Feb 15;39(4):1950-8. doi: 10.1016/j.neuroimage.2007.09.070. Epub 2007 Oct 16.
9
Integration of temporal and ordinal information during serial interception sequence learning.
J Exp Psychol Learn Mem Cogn. 2011 Jul;37(4):994-1000. doi: 10.1037/a0022959.
10
Dynamics of motor-related functional integration during motor sequence learning.
Neuroimage. 2010 Jan 1;49(1):759-66. doi: 10.1016/j.neuroimage.2009.08.048. Epub 2009 Aug 28.

引用本文的文献

1
The Role of Implicit Memory in the Development and Recovery from Trauma-Related Disorders.
NeuroSci. 2022 Jan 18;3(1):63-88. doi: 10.3390/neurosci3010005. eCollection 2022 Mar.
2
Acute Stress Effects on Statistical Learning and Episodic Memory.
J Cogn Neurosci. 2024 Jul 1;36(8):1741-1759. doi: 10.1162/jocn_a_02178.
3
Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements.
Front Neuroimaging. 2024 Feb 5;3:1341732. doi: 10.3389/fnimg.2024.1341732. eCollection 2024.
4
Characteristics of brain activation in high-level football players at different stages of decision-making tasks off the ball: an fMRI study.
Front Hum Neurosci. 2023 Aug 28;17:1189841. doi: 10.3389/fnhum.2023.1189841. eCollection 2023.
5
Theta Signal Transfer from Parietal to Prefrontal Cortex Ignites Conscious Awareness of Implicit Knowledge during Sequence Learning.
J Neurosci. 2023 Oct 4;43(40):6760-6778. doi: 10.1523/JNEUROSCI.2172-22.2023. Epub 2023 Aug 22.
6
Motor precision deficits in clinical high risk for psychosis.
Eur Arch Psychiatry Clin Neurosci. 2024 Sep;274(6):1427-1435. doi: 10.1007/s00406-023-01645-3. Epub 2023 Jul 17.
7
Early motor skill acquisition in healthy older adults: brain correlates of the learning process.
Cereb Cortex. 2023 Jun 8;33(12):7356-7368. doi: 10.1093/cercor/bhad044.
8
Brain default mode network mediates the association between negative perfectionism and exercise dependence.
J Behav Addict. 2022 Sep 16;11(3):928-940. doi: 10.1556/2006.2022.00067. Print 2022 Sep 26.
9
The Effects of Working Memory Training on Brain Activity.
Brain Sci. 2021 Jan 25;11(2):155. doi: 10.3390/brainsci11020155.

本文引用的文献

1
Functional mapping of sequence learning in normal humans.
J Cogn Neurosci. 1995 Fall;7(4):497-510. doi: 10.1162/jocn.1995.7.4.497.
2
Integration of temporal and ordinal information during serial interception sequence learning.
J Exp Psychol Learn Mem Cogn. 2011 Jul;37(4):994-1000. doi: 10.1037/a0022959.
4
Cerebral cortical dynamics during visuomotor transformation: adaptation to a cognitive-motor executive challenge.
Psychophysiology. 2011 Jun;48(6):813-24. doi: 10.1111/j.1469-8986.2010.01143.x. Epub 2010 Oct 21.
5
The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.
Neuroimage. 2010 Jan 1;49(1):694-702. doi: 10.1016/j.neuroimage.2009.08.055. Epub 2009 Sep 2.
6
Two types of dopamine neuron distinctly convey positive and negative motivational signals.
Nature. 2009 Jun 11;459(7248):837-41. doi: 10.1038/nature08028. Epub 2009 May 17.
7
"Neural efficiency" of athletes' brain for upright standing: a high-resolution EEG study.
Brain Res Bull. 2009 May 29;79(3-4):193-200. doi: 10.1016/j.brainresbull.2009.02.001. Epub 2009 Feb 11.
8
Differential effect of reward and punishment on procedural learning.
J Neurosci. 2009 Jan 14;29(2):436-43. doi: 10.1523/JNEUROSCI.4132-08.2009.
9
Contributions of the basal ganglia and functionally related brain structures to motor learning.
Behav Brain Res. 2009 Apr 12;199(1):61-75. doi: 10.1016/j.bbr.2008.11.012. Epub 2008 Nov 17.
10
An internal model of a moving visual target in the lateral cerebellum.
J Physiol. 2009 Jan 15;587(2):429-42. doi: 10.1113/jphysiol.2008.163337. Epub 2008 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验