Suppr超能文献

用于难运输药物胃肠道递送潜在应用的磁脂质体的微流控合成与纯化

Microfluidic Synthesis and Purification of Magnetoliposomes for Potential Applications in the Gastrointestinal Delivery of Difficult-to-Transport Drugs.

作者信息

Torres Carlos E, Cifuentes Javier, Gómez Saúl C, Quezada Valentina, Giraldo Kevin A, Puentes Paola Ruiz, Rueda-Gensini Laura, Serna Julian A, Muñoz-Camargo Carolina, Reyes Luis H, Osma Johann F, Cruz Juan C

机构信息

Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia.

Department of Chemical and Food Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia.

出版信息

Pharmaceutics. 2022 Jan 28;14(2):315. doi: 10.3390/pharmaceutics14020315.

Abstract

Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug delivery. However, there are some issues related to cell penetration, especially in the transport of cargoes that show limited membrane passing. A widely studied strategy to overcome this problem is the encapsulation of the MNPs into liposomes to form magnetoliposomes (MLPs), which are capable of fusing with membranes to achieve high delivery rates. This study presents a low-cost microfluidic approach for the synthesis and purification of MLPs and their biocompatibility and functional testing via hemolysis, platelet aggregation, cytocompatibility, internalization, and endosomal escape assays to determine their potential application in gastrointestinal delivery. The results show MLPs with average hydrodynamic diameters ranging from 137 ± 17 nm to 787 ± 45 nm with acceptable polydispersity index (PDI) values (below 0.5). In addition, we achieved encapsulation efficiencies between 20% and 90% by varying the total flow rates (TFRs), flow rate ratios (FRRs), and MNPs concentration. Moreover, remarkable biocompatibility was attained with the obtained MLPs in terms of hemocompatibility (hemolysis below 1%), platelet aggregation (less than 10% with respect to PBS 1×), and cytocompatibility (cell viability higher than 80% in AGS and Vero cells at concentrations below 0.1 mg/mL). Additionally, promising delivery results were obtained, as evidenced by high internalization, low endosomal entrapment (AGS cells: PCC of 0.28 and covered area of 60% at 0.5 h and PCC of 0.34 and covered area of 99% at 4 h), and negligible nuclear damage and DNA condensation. These results confirm that the developed microfluidic devices allow high-throughput production of MLPs for potential encapsulation and efficient delivery of nanostructured cell-penetrating agents. Nevertheless, further in vitro analysis must be carried out to evaluate the prevalent intracellular trafficking routes as well as to gain a detailed understanding of the existing interactions between nanovehicles and cells.

摘要

磁铁矿纳米颗粒(MNPs)在药物递送的多种应用中受到了广泛关注。然而,存在一些与细胞穿透相关的问题,特别是在运输那些膜通透性有限的货物时。一种被广泛研究的克服这一问题的策略是将MNPs封装到脂质体中以形成磁脂质体(MLPs),磁脂质体能够与细胞膜融合以实现高递送率。本研究提出了一种低成本的微流控方法,用于MLPs的合成、纯化及其生物相容性和功能测试,通过溶血、血小板聚集、细胞相容性、内化和内体逃逸测定来确定它们在胃肠道递送中的潜在应用。结果显示,MLPs的平均流体动力学直径范围为137±17nm至787±45nm,具有可接受的多分散指数(PDI)值(低于0.5)。此外,通过改变总流速(TFRs)、流速比(FRRs)和MNPs浓度,我们实现了20%至90%的包封效率。此外,所获得的MLPs在血液相容性(溶血率低于1%)、血小板聚集(相对于1×PBS小于10%)和细胞相容性(在AGS和Vero细胞中,浓度低于0.1mg/mL时细胞活力高于80%)方面表现出显著的生物相容性。此外,还获得了有前景的递送结果,高内化、低内体截留(AGS细胞:0.5h时PCC为0.28,覆盖面积为60%;4h时PCC为0.34,覆盖面积为99%)以及可忽略不计的核损伤和DNA凝聚证明了这一点。这些结果证实,所开发的微流控装置允许高通量生产MLPs,用于潜在的纳米结构细胞穿透剂的封装和高效递送。然而,必须进行进一步的体外分析,以评估普遍存在的细胞内运输途径,并详细了解纳米载体与细胞之间现有的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b0/8877506/ea21ec9d9127/pharmaceutics-14-00315-sch001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验