Institute of Wireless Theories and Technologies Laboratory, Beijing University of Posts and Telecommunications, Haidian, Beijing 100876, China.
Sensors (Basel). 2022 Feb 13;22(4):1446. doi: 10.3390/s22041446.
Limited-view Computed Tomography (CT) can be used to efficaciously reduce radiation dose in clinical diagnosis, it is also adopted when encountering inevitable mechanical and physical limitation in industrial inspection. Nevertheless, limited-view CT leads to severe artifacts in its imaging, which turns out to be a major issue in the low dose protocol. Thus, how to exploit the limited prior information to obtain high-quality CT images becomes a crucial issue. We notice that almost all existing methods solely focus on a single CT image while neglecting the solid fact that, the scanned objects are always highly spatially correlated. Consequently, there lies bountiful spatial information between these acquired consecutive CT images, which is still largely left to be exploited. In this paper, we propose a novel hybrid-domain structure composed of fully convolutional networks that groundbreakingly explores the three-dimensional neighborhood and works in a "coarse-to-fine" manner. We first conduct data completion in the Radon domain, and transform the obtained full-view Radon data into images through FBP. Subsequently, we employ the spatial correlation between continuous CT images to productively restore them and then refine the image texture to finally receive the ideal high-quality CT images, achieving PSNR of 40.209 and SSIM of 0.943. Besides, unlike other current limited-view CT reconstruction methods, we adopt FBP (and implement it on GPUs) instead of SART-TV to significantly accelerate the overall procedure and realize it in an end-to-end manner.
有限视角计算机断层扫描(CT)可有效地降低临床诊断中的辐射剂量,在工业检测中遇到不可避免的机械和物理限制时也会采用这种方法。然而,有限视角 CT 会导致其成像中的严重伪影,这在低剂量协议中是一个主要问题。因此,如何利用有限的先验信息获得高质量的 CT 图像成为一个关键问题。
我们注意到,几乎所有现有的方法都只关注单个 CT 图像,而忽略了一个事实,即被扫描的物体总是具有高度的空间相关性。因此,在这些获取的连续 CT 图像之间存在大量的空间信息,这些信息仍然有待大量开发。
在本文中,我们提出了一种由全卷积网络组成的新型混合域结构,开创性地探索了三维邻域,并以“从粗到细”的方式工作。我们首先在 Radon 域中进行数据补全,并通过 FBP 将获得的全视角 Radon 数据转换为图像。然后,我们利用连续 CT 图像之间的空间相关性来有效地恢复它们,然后细化图像纹理,最终获得理想的高质量 CT 图像,PSNR 达到 40.209,SSIM 达到 0.943。
此外,与其他当前的有限视角 CT 重建方法不同,我们采用 FBP(并在 GPU 上实现)而不是 SART-TV 来显著加速整个过程,并以端到端的方式实现它。