Khan Naveed Ahmad, Sulaiman Muhammad, Tavera Romero Carlos Andrés, Alshammari Fahad Sameer
Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan.
COMBA I + D Research Group of Universidad Santiago de Cali, Santiago de Cali 760036, Colombia.
Nanomaterials (Basel). 2022 Feb 14;12(4):637. doi: 10.3390/nano12040637.
This study investigated the steady two-phase flow of a nanofluid in a permeable duct with thermal radiation, a magnetic field, and external forces. The basic continuity and momentum equations were considered along with the Buongiorno model to formulate the governing mathematical model of the problem. Furthermore, the intelligent computational strength of artificial neural networks (ANNs) was utilized to construct the approximate solution for the problem. The unsupervised objective functions of the governing equations in terms of mean square error were optimized by hybridizing the global search ability of an arithmetic optimization algorithm (AOA) with the local search capability of an interior point algorithm (IPA). The proposed ANN-AOA-IPA technique was implemented to study the effect of variations in the thermophoretic parameter (Nt), Hartmann number (Ha), Brownian (Nb) and radiation (Rd) motion parameters, Eckert number (Ec), Reynolds number (Re) and Schmidt number (Sc) on the velocity profile, thermal profile, Nusselt number and skin friction coefficient of the nanofluid. The results obtained by the designed metaheuristic algorithm were compared with the numerical solutions obtained by the Runge-Kutta method of order 4 (RK-4) and machine learning algorithms based on a nonlinear autoregressive network with exogenous inputs (NARX) and backpropagated Levenberg-Marquardt algorithm. The mean percentage errors in approximate solutions obtained by ANN-AOA-IPA are around 10-6 to 10-7. The graphical analysis illustrates that the velocity, temperature, and concentration profiles of the nanofluid increase with an increase in the suction parameter, Eckert number and Schmidt number, respectively. Solutions and the results of performance indicators such as mean absolute deviation, Theil's inequality coefficient and error in Nash-Sutcliffe efficiency further validate the proposed algorithm's utility and efficiency.
本研究调查了纳米流体在具有热辐射、磁场和外力的可渗透管道中的稳态两相流。考虑了基本的连续性和动量方程以及布翁焦尔诺模型,以建立该问题的控制数学模型。此外,利用人工神经网络(ANN)的智能计算能力来构建该问题的近似解。通过将算术优化算法(AOA)的全局搜索能力与内点算法(IPA)的局部搜索能力相结合,优化了以均方误差表示的控制方程的无监督目标函数。采用所提出的ANN - AOA - IPA技术来研究热泳参数(Nt)、哈特曼数(Ha)、布朗运动(Nb)和辐射(Rd)运动参数、埃克特数(Ec)、雷诺数(Re)和施密特数(Sc)的变化对纳米流体的速度分布、温度分布、努塞尔数和表面摩擦系数的影响。将设计的元启发式算法得到的结果与四阶龙格 - 库塔方法(RK - 4)以及基于具有外部输入的非线性自回归网络(NARX)和反向传播的列文伯格 - 马夸特算法的机器学习算法得到的数值解进行了比较。ANN - AOA - IPA得到的近似解中的平均百分比误差约为10⁻⁶至10⁻⁷。图形分析表明,纳米流体的速度、温度和浓度分布分别随着抽吸参数、埃克特数和施密特数的增加而增加。诸如平均绝对偏差、泰尔不等式系数和纳什 - 萨特克利夫效率误差等性能指标的解和结果进一步验证了所提出算法的实用性和效率。