Suppr超能文献

用于生物医学应用的超纯磁等离子体核壳卫星纳米复合材料的激光烧蚀合成

Laser-Ablative Synthesis of Ultrapure Magneto-Plasmonic Core-Satellite Nanocomposites for Biomedical Applications.

作者信息

Popov Anton A, Swiatkowska-Warkocka Zaneta, Marszalek Marta, Tselikov Gleb, Zelepukin Ivan V, Al-Kattan Ahmed, Deyev Sergey M, Klimentov Sergey M, Itina Tatiana E, Kabashin Andrei V

机构信息

Institute of Engineering Physics for Biomedicine (Phys-Bio), Moscow Engineering Physics Institute, 115409 Moscow, Russia.

Laboratory of Lasers Plasmas and Photonic Processing, CNRS, Aix-Marseille University (Campus of Luminy), 13288 Marseille, France.

出版信息

Nanomaterials (Basel). 2022 Feb 15;12(4):649. doi: 10.3390/nano12040649.

Abstract

The combination of magnetic and plasmonic properties at the nanoscale promises the development of novel synergetic image-guided therapy strategies for the treatment of cancer and other diseases, but the fabrication of non-contaminated magneto-plasmonic nanocomposites suitable for biological applications is difficult within traditional chemical methods. Here, we describe a methodology based on laser ablation from Fe target in the presence of preliminarily ablated water-dispersed Au nanoparticles (NPs) to synthesize ultrapure bare (ligand-free) core-satellite nanostructures, consisting of large (several tens of nm) Fe-based core decorated by small (mean size 7.5 nm) Au NPs. The presence of the Fe-based core conditions a relatively strong magnetic response of the nanostructures (magnetization of >12.6 emu/g), while the Au NPs-based satellite shell provides a broad extinction peak centered at 550 nm with a long tale in the near-infrared to overlap with the region of relative tissue transparency (650-950 nm). We also discuss possible mechanisms responsible for the formation of the magnetic-plasmonic nanocomposites. We finally demonstrate a protocol to enhance colloidal stability of the core-satellites in biological environment by their coating with different polymers. Exempt of toxic impurities and combining strong magnetic and plasmonic responses, the formed core-satellite nanocomposites can be used in biomedical applications, including photo- and magneto-induced therapies, magnetic resonance imaging or photoacoustic imaging.

摘要

纳米尺度下磁性和等离子体特性的结合有望开发出用于治疗癌症和其他疾病的新型协同图像引导治疗策略,但采用传统化学方法难以制备出适用于生物应用的无污染磁等离子体纳米复合材料。在此,我们描述了一种基于在预先烧蚀的水分散金纳米颗粒(NPs)存在下从铁靶进行激光烧蚀的方法,以合成超纯裸(无配体)核 - 卫星纳米结构,该结构由大尺寸(几十纳米)的铁基核和小尺寸(平均尺寸7.5纳米)的金纳米颗粒修饰而成。铁基核的存在使纳米结构具有相对较强的磁响应(磁化强度>12.6 emu/g),而基于金纳米颗粒的卫星壳在550纳米处提供一个宽的消光峰,并在近红外区域有一个长尾巴,以与相对组织透明度区域(650 - 950纳米)重叠。我们还讨论了负责形成磁等离子体纳米复合材料的可能机制。最后,我们展示了一种通过用不同聚合物包覆来增强核 - 卫星在生物环境中胶体稳定性的方案。所形成的核 - 卫星纳米复合材料不含有毒杂质,并结合了强磁响应和等离子体响应,可用于生物医学应用,包括光诱导和磁诱导疗法、磁共振成像或光声成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验