文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学应用的激光烧蚀辅助合成等离子体硅@金核壳卫星纳米复合材料

Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications.

作者信息

Al-Kattan Ahmed, Tselikov Gleb, Metwally Khaled, Popov Anton A, Mensah Serge, Kabashin Andrei V

机构信息

Aix-Marseille University, CNRS, LP3, Campus de Luminy, 13013 Marseille, France.

Moscow Institute of Physics and Technology, Center for Photonics and 2D Materials, 141700 Dolgoprudny, Russia.

出版信息

Nanomaterials (Basel). 2021 Feb 26;11(3):592. doi: 10.3390/nano11030592.


DOI:10.3390/nano11030592
PMID:33652885
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7996915/
Abstract

Owing to strong plasmonic absorption and excellent biocompatibility, gold nanostructures are among best candidates for photoacoustic bioimaging and photothermal therapy, but such applications require ultrapure Au-based nanoformulations of complex geometry (core-shells, nanorods) in order to shift the absorption band toward the region of relative tissue transparency (650-1000 nm). Here, we present a methodology for the fabrication of Si@Au core-satellite nanostructures, comprising of a Si core covered with small Au nanoparticles (NP), based on laser ablative synthesis of Si and Au NPs in water/ethanol solutions, followed by a chemical modification of the Si NPs by 3-aminopropyltrimethoxysilane (APTMS) and their subsequent decoration by the Au NPs. We show that the formed core-satellites have a red-shifted plasmonic absorption feature compared to that of pure Au NPs (520 nm), with the position of the peak depending on APTMS amount, water-ethanol solvent percentage and Si-Au volume ratio. As an example, even relatively small 40-nm core-satellites (34 nm Si core + 4 nm Au shell) provided a much red shifted peak centered around 610 nm and having a large tail over 700 nm. The generation of the plasmonic peak is confirmed by modeling of Si@Au core-shells of relevant parameters via Mie theory. Being relatively small and exempt of any toxic impurity due to ultraclean laser synthesis, the Si@Au core-satellites promise a major advancement of imaging and phototherapy modalities based on plasmonic properties of nanomaterials.

摘要

由于具有强烈的等离子体吸收特性和出色的生物相容性,金纳米结构是光声生物成像和光热疗法的最佳候选材料之一,但此类应用需要具有复杂几何形状(核壳结构、纳米棒)的超纯金基纳米制剂,以便将吸收带移向相对组织透明的区域(650 - 1000 nm)。在此,我们提出一种制备Si@Au核 - 卫星纳米结构的方法,该结构由覆盖有小金纳米颗粒(NP)的硅核组成,基于在水/乙醇溶液中通过激光烧蚀合成硅和金纳米颗粒,随后用3 - 氨丙基三甲氧基硅烷(APTMS)对硅纳米颗粒进行化学修饰,并随后用金纳米颗粒进行装饰。我们表明,与纯金纳米颗粒(520 nm)相比,形成的核 - 卫星结构具有红移的等离子体吸收特征,其峰值位置取决于APTMS的量、水 - 乙醇溶剂百分比和硅 - 金体积比。例如,即使是相对较小的40纳米核 - 卫星结构(34纳米硅核 + 4纳米金壳)也提供了一个红移得多的峰值,中心约在610纳米,并且在700纳米以上有一个大的拖尾峰。通过米氏理论对相关参数的Si@Au核壳结构进行建模,证实了等离子体峰的产生。由于超清洁激光合成,Si@Au核 - 卫星结构相对较小且不含任何有毒杂质,有望基于纳米材料的等离子体特性在成像和光疗模式方面取得重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/ecfd2fff9555/nanomaterials-11-00592-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/bf12d1a0ca6e/nanomaterials-11-00592-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/991741c3b5d4/nanomaterials-11-00592-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/976103e9d7d5/nanomaterials-11-00592-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/a649eaba3a2e/nanomaterials-11-00592-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/20d197094e9e/nanomaterials-11-00592-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/ecfd2fff9555/nanomaterials-11-00592-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/bf12d1a0ca6e/nanomaterials-11-00592-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/991741c3b5d4/nanomaterials-11-00592-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/976103e9d7d5/nanomaterials-11-00592-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/a649eaba3a2e/nanomaterials-11-00592-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/20d197094e9e/nanomaterials-11-00592-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/7996915/ecfd2fff9555/nanomaterials-11-00592-g006.jpg

相似文献

[1]
Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications.

Nanomaterials (Basel). 2021-2-26

[2]
Laser-Ablative Synthesis of Ultrapure Magneto-Plasmonic Core-Satellite Nanocomposites for Biomedical Applications.

Nanomaterials (Basel). 2022-2-15

[3]
Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications.

Sci Rep. 2019-2-4

[4]
Formation and Application of Core-Shell of FePt-Au Magnetic-Plasmonic Nanoparticles.

Front Chem. 2021-4-27

[5]
Laser-synthesized plasmonic HfN-based nanoparticles as a novel multifunctional agent for photothermal therapy.

Nanoscale. 2024-10-3

[6]
Laser Synthesized Core-Satellite Fe-Au Nanoparticles for Multimodal In Vivo Imaging and In Vitro Photothermal Therapy.

Pharmaceutics. 2022-5-5

[7]
Laser-Ablative Synthesis of Silicon-Iron Composite Nanoparticles for Theranostic Applications.

Nanomaterials (Basel). 2023-8-5

[8]
Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.

Acc Chem Res. 2013-8-30

[9]
Merging of Bi-Modality of Ultrafast Laser Processing: Heating of Si/Au Nanocomposite Solutions with Controlled Chemical Content.

Nanomaterials (Basel). 2024-2-6

[10]
Synthesis of Titanium Nitride Nanoparticles by Pulsed Laser Ablation in Different Aqueous and Organic Solutions.

Nanomaterials (Basel). 2022-5-13

引用本文的文献

[1]
From Past to Present: Gold Nanoparticles (AuNPs) in Daily LifeSynthesis Mechanisms, Influencing Factors, Characterization, Toxicity, and Emerging Applications in Biomedicine, Nanoelectronics, and Materials Science.

ACS Omega. 2025-7-30

[2]
Tunable Nanostructuring for van der Waals Materials.

ACS Nano. 2025-7-1

[3]
Tungsten Diselenide Nanoparticles Produced via Femtosecond Ablation for SERS and Theranostics Applications.

Nanomaterials (Basel). 2024-12-24

[4]
Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines.

Discov Nano. 2024-10-4

[5]
Harnessing sustainable nanoclusters for sensitive optical detection of tetracyclines and the underlying mechanism.

Nanoscale Adv. 2024-9-6

[6]
Assessment of laser-synthesized Si nanoparticle effects on myoblast motility, proliferation and differentiation: towards potential tissue engineering applications.

Nanoscale Adv. 2024-3-18

[7]
Molecular Dynamics Modeling of Pulsed Laser Fragmentation of Solid and Porous Si Nanoparticles in Liquid Media.

Int J Mol Sci. 2023-9-23

[8]
Laser-Ablative Synthesis of Silicon-Iron Composite Nanoparticles for Theranostic Applications.

Nanomaterials (Basel). 2023-8-5

[9]
Ag-Decorated Si Microspheres Produced by Laser Ablation in Liquid: All-in-One Temperature-Feedback SERS-Based Platform for Nanosensing.

Materials (Basel). 2022-11-15

[10]
Femtosecond Laser-Assisted Formation of Hybrid Nanoparticles from Bi-Layer Gold-Silicon Films for Microscale White-Light Source.

Nanomaterials (Basel). 2022-5-21

本文引用的文献

[1]
Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics.

Mater Sci Eng C Mater Biol Appl. 2021-1

[2]
Ultrapure laser-synthesized Si nanoparticles with variable oxidation states for biomedical applications.

J Mater Chem B. 2016-12-28

[3]
In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles.

Sci Rep. 2019-9-9

[4]
Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare.

ACS Nano. 2019-9-13

[5]
Gold and Silver Nanoparticles Functionalized by the Adsorption of Dialkyl Disulfides.

Langmuir. 1998-12-22

[6]
Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications.

Sci Rep. 2019-2-4

[7]
Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification.

J Biophotonics. 2018-7

[8]
The Synthesis of Hybrid Gold-Silicon Nano Particles in a Liquid.

Sci Rep. 2017-8-31

[9]
Laser Synthesis and Processing of Colloids: Fundamentals and Applications.

Chem Rev. 2017-2-13

[10]
What theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer?

Nanomedicine (Lond). 2016-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索