Adnan Md, Oh Ki-Kwang, Husen Azamal, Wang Myeong-Hyeon, Alle Madhusudhan, Cho Dong-Ha
Department of Bio-Health Convergence, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
School of Public Health, Wolaita Sodo University, Wolaita Sodo 138, Ethiopia.
Pharmaceuticals (Basel). 2022 Jan 18;15(2):111. doi: 10.3390/ph15020111.
The combination of green-nanotechnology and biology may contribute to anticancer therapy. In this regard, using gold nanoparticles (GNPs) as therapeutic molecules can be a promising strategy. Herein, we proposed a novel biocompatible nanogold constructed by simply microwave-heating (MWI) Au ions and kenaf seed (KS) extract within a minute. The phytoconstituents of KS extract have been utilized for safe synthesis of gold nanoparticles (KS@GNPs). The biogenic KS@GNPs were characterized by UV-vis Spectra, TEM, HR-TEM, XRD, FTIR, DLS, EDX, and SEAD techniques. The legitimacy and toxicity concern of KS@GNPs were tested against RAW 264.7 and NIH3T3 cell lines. The anticancer efficacy was verified using LN-229 cells. The pathways of KS@GNPs synthesis were optimized by varying the KS concentration (λmax 528 nm), gold salt amount (λmax 524 nm), and MWI times (λmax 522 nm). TEM displayed spherical shape and narrow size distribution (5-19.5 nm) of KS@GNPs, whereas DLS recorded Z-average size of 121.7 d·nm with a zeta potential of -33.7 mV. XRD and SAED ring patterns confirmed the high crystallinity and crystalline face centered cubic structure of gold. FTIR explored OH functional group involved in Au ions reduction followed by GNPs stabilization. KS@GNPs exposure to RAW 264.7 and NIH3T3 cell lines did not induce toxicity while dose-dependent overt cell toxicity and reduced cell viability (26.6%) was observed in LN-229 cells. Moreover, the IC (18.79 µg/mL) treatment to cancer cell triggered cellular damages, excessive ROS generation, and apoptosis. Overall, this research exploits a sustainable method of KS@GNPs synthesis and their anticancer therapy.
绿色纳米技术与生物学的结合可能有助于抗癌治疗。在这方面,将金纳米颗粒(GNPs)用作治疗分子可能是一种很有前景的策略。在此,我们提出了一种新型的生物相容性纳米金,它是通过在一分钟内简单地微波加热(MWI)金离子和红麻籽(KS)提取物构建而成。KS提取物中的植物成分已被用于安全合成金纳米颗粒(KS@GNPs)。通过紫外可见光谱、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、动态光散射(DLS)、能量散射X射线谱(EDX)和选区电子衍射(SEAD)技术对生物合成的KS@GNPs进行了表征。针对RAW 264.7和NIH3T3细胞系测试了KS@GNPs的合理性和毒性问题。使用LN-229细胞验证了其抗癌效果。通过改变KS浓度(λmax 528 nm)、金盐用量(λmax 524 nm)和MWI时间(λmax 522 nm)优化了KS@GNPs的合成途径。TEM显示KS@GNPs呈球形且尺寸分布狭窄(5 - 19.5 nm),而DLS记录的Z平均尺寸为121.7 d·nm,zeta电位为 - 33.7 mV。XRD和SAED环形图案证实了金的高结晶度和晶面心立方结构。FTIR探究了参与金离子还原及随后GNPs稳定化的OH官能团。KS@GNPs作用于RAW 264.7和NIH3T3细胞系未诱导毒性,而在LN-229细胞中观察到剂量依赖性的明显细胞毒性和细胞活力降低(26.6%)。此外,IC(18.79 µg/mL)处理癌细胞引发了细胞损伤、过量活性氧生成和细胞凋亡。总体而言,本研究探索了一种可持续的KS@GNPs合成方法及其抗癌治疗方法。