Rivero-Ortega Jesús D, Mosquera-Maturana Juan S, Pardo-Cabrera Josh, Hurtado-López Julián, Hernández Juan D., Romero-Cano Victor, Ramírez-Moreno David F
Department of Engineering, Universidad Autónoma de Occidente, Cali, Colombia.
Department of Mathematics, Universidad Autónoma de Occidente, Cali, Colombia.
Front Neurorobot. 2023 Aug 31;17:1211570. doi: 10.3389/fnbot.2023.1211570. eCollection 2023.
We introduce a bio-inspired navigation system for a robot to guide a social agent to a target location while avoiding static and dynamic obstacles. Robot navigation can be accomplished through a model of ring attractor neural networks. This connectivity pattern between neurons enables the generation of stable activity patterns that can represent continuous variables such as heading direction or position. The integration of sensory representation, decision-making, and motor control through ring attractor networks offers a biologically-inspired approach to navigation in complex environments.
The navigation system is divided into perception, planning, and control stages. Our approach is compared to the widely-used Social Force Model and Rapidly Exploring Random Tree Star methods using the Social Individual Index and Relative Motion Index as metrics in simulated experiments. We created a virtual scenario of a pedestrian area with various obstacles and dynamic agents.
The results obtained in our experiments demonstrate the effectiveness of this architecture in guiding a social agent while avoiding obstacles, and the metrics used for evaluating the system indicate that our proposal outperforms the widely used Social Force Model.
Our approach points to improving safety and comfort specifically for human-robot interactions. By integrating the Social Individual Index and Relative Motion Index, this approach considers both social comfort and collision avoidance features, resulting in better human-robot interactions in a crowded environment.
我们为机器人引入了一种受生物启发的导航系统,以引导社交代理到达目标位置,同时避开静态和动态障碍物。机器人导航可以通过环形吸引子神经网络模型来实现。神经元之间的这种连接模式能够生成稳定的活动模式,这些模式可以表示连续变量,如航向方向或位置。通过环形吸引子网络整合感官表征、决策和运动控制,为复杂环境中的导航提供了一种受生物启发的方法。
导航系统分为感知、规划和控制阶段。在模拟实验中,我们将我们的方法与广泛使用的社会力模型和快速探索随机树星方法进行比较,使用社会个体指数和相对运动指数作为指标。我们创建了一个带有各种障碍物和动态代理的步行区域虚拟场景。
我们实验中获得的结果证明了这种架构在引导社交代理避开障碍物方面的有效性,用于评估系统的指标表明我们的方案优于广泛使用的社会力模型。
我们的方法特别指向改善人机交互的安全性和舒适性。通过整合社会个体指数和相对运动指数,这种方法兼顾了社会舒适性和避撞特征,从而在拥挤环境中实现更好的人机交互。